Problem Description
=== Op tech briefing, 2002/11/02 06:42 CST ===
"The item is locked in a Klein safe behind a painting in the second-floor library. Klein safes are extremely rare; most of them, along with Klein and his factory, were destroyed in World War II. Fortunately old Brumbaugh from research knew Klein's secrets and wrote them down before he died. A Klein safe has two distinguishing features: a combination lock that uses letters instead of numbers, and an engraved quotation on the door. A Klein quotation always contains between five and twelve distinct uppercase letters, usually at the beginning of sentences, and mentions one or more numbers. Five of the uppercase letters form the combination that opens the safe. By combining the digits from all the numbers in the appropriate way you get a numeric target. (The details of constructing the target number are classified.) To find the combination you must select five letters v, w, x, y, and z that satisfy the following equation, where each letter is replaced by its ordinal position in the alphabet (A=1, B=2, ..., Z=26). The combination is then vwxyz. If there is more than one solution then the combination is the one that is lexicographically greatest, i.e., the one that would appear last in a dictionary."

v - w^2 + x^3 - y^4 + z^5 = target

"For example, given target 1 and letter set ABCDEFGHIJKL, one possible solution is FIECB, since 6 - 9^2 + 5^3 - 3^4 + 2^5 = 1. There are actually several solutions in this case, and the combination turns out to be LKEBA. Klein thought it was safe to encode the combination within the engraving, because it could take months of effort to try all the possibilities even if you knew the secret. But of course computers didn't exist then."

=== Op tech directive, computer division, 2002/11/02 12:30 CST ===

"Develop a program to find Klein combinations in preparation for field deployment. Use standard test methodology as per departmental regulations. Input consists of one or more lines containing a positive integer target less than twelve million, a space, then at least five and at most twelve distinct uppercase letters. The last line will contain a target of zero and the letters END; this signals the end of the input. For each line output the Klein combination, break ties with lexicographic order, or 'no solution' if there is no correct combination. Use the exact format shown below."

 
Sample Input
1 ABCDEFGHIJKL
11700519 ZAYEXIWOVU
3072997 SOUGHT
1234567 THEQUICKFROG
0 END
 
Sample Output
LKEBA
YOXUZ
GHOST
no solution
#include<stdio.h>
#include<string.h>
#include<math.h>
int vist[1000],flog,len,target,s[10],top,loction[10];
int m[1000];
int cmp()
{
int v,w,x,y,z;//一定要注意转换成int型的精度问题
v=s[1];
w=(int)(pow(s[2]*1.0,2.0)+0.5);
x=(int)(pow(s[3]*1.0,3.0)+0.5);
y=(int)(pow(s[4]*1.0,4.0)+0.5);
z=(int)(pow(s[5]*1.0,5.0)+0.5);
if(v-w+x-y+z==target)
return 1;//相等反回1
return 0;
}
void DFS(int n)
{
int i;
s[++top]=m[n];//放数的栈
loction[top]=n;//记绿m[n]的位置
vist[n]=1;//表示第n个位置被访问了 if(top==5)//相等就可以比较
flog=cmp();
if(flog)//为真,则找到了不用往下
return ;
if(top<5)//只有栈中小于5个数才继续可以放数
{
for(i=1;i<=len;i++)
if(vist[i]==0)
{
DFS(i);
if(flog)//用来结束上层的DFS
return ;
}
} vist[n]=0;top--;//退回
}
int main()
{
char str[1000],tem;
int i,j,e;
while(scanf("%d %s",&target,str)>0)
{
if(target==0&&strcmp(str,"END")==0)
break;
flog=0;
len=strlen(str);
for(i=0;i<len;i++)//按字典序从大到小排
{
e=i;
for(j=i+1;j<len;j++)
if(str[e]<str[j])
e=j;
tem=str[i];str[i]=str[e];str[e]=tem;
}
for(i=0;i<len;i++)//变成数字
m[i+1]=str[i]-'A'+1; for(i=1;i<=len;i++)//以第i个数为开头
{
memset(vist,0,sizeof(vist));
top=0;
DFS(i);
if(flog)
break;
}
if(flog)
{
for(i=1;i<=top;i++)
printf("%c",str[loction[i]-1]);
}
else
printf("no solution");
printf("\n");
}
}

 

hdu1015(Safecracker )的更多相关文章

  1. hdu1015 Safecracker (暴力枚举)

    http://acm.hdu.edu.cn/showproblem.php?pid=1015 Safecracker Time Limit: 2000/1000 MS (Java/Others)    ...

  2. hdu1015 Safecracker —— 回溯

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1015 代码1: #include<stdio.h>//hdu1015 #include&l ...

  3. hdu - 1010 Tempter of the Bone (dfs+奇偶性剪枝) && hdu-1015 Safecracker(简单搜索)

    http://acm.hdu.edu.cn/showproblem.php?pid=1010 这题就是问能不能在t时刻走到门口,不能用bfs的原因大概是可能不一定是最短路路径吧. 但是这题要过除了细心 ...

  4. Safecracker 分类: HDU 搜索 2015-06-25 21:12 12人阅读 评论(0) 收藏

    Safecracker Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...

  5. HDU-1015(暴力)

    Safecracker Problem Description === Op tech briefing, 2002/11/02 06:42 CST === "The item is loc ...

  6. ZOJ 1403&&HDU 1015 Safecracker【暴力】

    Safecracker Time Limit: 2 Seconds      Memory Limit: 65536 KB === Op tech briefing, 2002/11/02 06:42 ...

  7. HDOJ(HDU).1015 Safecracker (DFS)

    HDOJ(HDU).1015 Safecracker [从零开始DFS(2)] 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HDOJ.1 ...

  8. HDU 1015 Safecracker【数值型DFS】

    Safecracker Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  9. HDU 1015 Safecracker(第一次用了搜索去遍历超时,第二次用for循环能够了,思路一样的)

    Safecracker Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total S ...

随机推荐

  1. Python购物车的实现课程

    需求: 1.用户输入工资收入 2.打印商品列表 3.用户选择商品,不断的加入购物车 4.检测用户余额,直接捐款,不足提示余额不足 5.允许主动退出,退出时,打印已购商品列表 重点方法: 打印列表下标的 ...

  2. xml2js

    实际做项目的时候会有很多的XML配置文件,有些XML多达上千行,比如物品,武将的配置,一般的手游项目是直接解析XML文件,这就引发2个问题. 1.XML是明文,代码中解析必要要做加密. 2.有些配置过 ...

  3. PHP面向对象的构造方法与析构方法

    构造方法与析构方法是对象中的两个特殊方法,它们都与对象的生命周期有关.构造方法时对象创建完成后第一个被对象自动调用的方法,这是我们在对象中使用构造方法的原因.而析构方法时对象在销毁之前最后一个被对象自 ...

  4. DataTables自定义事件

    $(document).ready(function() { var eventFired = function(type) { var n = $('#demo_info')[0]; n.inner ...

  5. SQL建模错误--逗号分隔值

    最近帮一个客户分析SQL语句的问题,大致经过如下 场景: 委托方有一个用于追踪他们产品的系统,每个产品都会卖给许多客户:但是客户又被从业务上分成两类,一类是带有合作伙伴性质的,这个 合作伙伴通常会给予 ...

  6. Google Analytics:为链接点击设定事件追踪的方法

    在 Google Analytics 中,可以使用 Event Tracking 功能跟踪自定义的事件.但是,如果你要跟踪的是一个链接点击,那么单纯这样写则很有可能导致漏掉许多事件: <a hr ...

  7. 程序被送入后台后,向 iOS 借时间,完成长期任务-备

    12.2.2. 方案 使用UIApplication的beginBackgroundTaskWithExpirationHandler: 实例方法.在你完成任务后,调用UIApplication的en ...

  8. NSNumber与NSInteger的区别 -bei

    基本类型,如同C 语言中的 int 类型一样,拿来就可以直接用. 而类在使用时,必须先创建一个对象,再为对象分配空间,接着做初始化和赋值. 类的初始化,需用类自身的方法 (类方法). 代码中所创建的对 ...

  9. git新手碰到的各种奇葩问题之一

    git  操作错误: <1>.情景描述:当在git commit --amend 更新上一次提交时,而此时提交日志会跳转到别人的日志中.,会出现错误:如下 弥补操作: 1.git fetc ...

  10. photoshop sdk

    http://blogs.adobe.com/photoshop/2013/09/introducing-adobe-generator-for-photoshop-cc.html