这套题。。除了几何的都出了

完全没时间学几何。杯具

A,B,J

水题不解释

C.Pen Counts

这题的话

写几个不等式限制边得范围就行了

然后枚举最小边

D.Maximum Random Walk

这题的话。

正解是一个n^3的dp

dp[i][j][k] 表示第i步走到第j位置最右为k的概率

然后用滚动数组搞,非常简单。

但是还有一种n ^ 2的方法。 被我在比赛中试出来的。

大概是直接记录的第i步走到最右为j的概率

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#define MAXN 111111
#define INF 1000000007
using namespace std;
int st;
double dp[1111][1111];
double L, R;
int main()
{
int T, cas;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &cas, &st);
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
scanf("%lf%lf", &L, &R);
for(int i = 1; i <= st; i++)
for(int j = 0; j <= st; j++)
{
dp[i][j] += dp[i - 1][j + 1] * L + dp[i - 1][j] * (1.0 - L - R);
if(j > 0) dp[i][j] += dp[i - 1][j - 1] * R ;
else dp[i][j] += dp[i - 1][j] * L;
}
double ans = 0;
for(int i = 1; i <= st; i++)
ans += dp[st][i] * i;
printf("%d %.4f\n", cas, ans);
}
return 0;
}

E. Faulhaber's Triangle

按照题目所说预处理一下就行了

注意中间过程会爆int

F .The King's Ups and Downs

这题的话。

如果观察能力强的可以推推公式

不行的话。就像我这样用状压DP打表

令dp[i][j][k] 表示第i步,末尾为j士兵,取过的士兵集合为k的方案数

那么有两种,一种是大小大小这样,一种是小大小大这样

所以要求两次

然后打个表就行了。

后来发现第一维没必要。。 因为已经包含在第三维里了

代码就不粘贴了。

G.Mad Veterinarian

逗比题目

不给数据范围

最后发现数据范围巨小,不超过10

然后BFS就行

但是没SPJ。 呵呵

H, I 留坑

Regionals 2012, North America - Greater NY 解题报告的更多相关文章

  1. 组队练习赛(Regionals 2012, North America - East Central NA)

    A.Babs' Box Boutique 给定n个盒子,每个盒子都有长宽高(任意两个盒子长宽高不完全相同),现在选盒子的任意两面,要求x1 <= x2 && y1 <= y ...

  2. 130825组队赛-Regionals 2012, North America - East Central NA

    A.Babs' Box Boutique 一道简单的dfs搜索题,需要两两比较,然后搜到底,得到最大值就行了.比赛时队友写的,我只负责debug..赛后自己写的.. #include<iostr ...

  3. Regionals 2013 :: North America - Southeast USA

    Regionals 2013 :: North America - Southeast USA It Takes a Village As a Sociologist, you are studyin ...

  4. 2015 UESTC Winter Training #6【Regionals 2010 >> North America - Rocky Mountain】

    2015 UESTC Winter Training #6 Regionals 2010 >> North America - Rocky Mountain A - Parenthesis ...

  5. 【LeetCode】538. Convert BST to Greater Tree 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 日期 题目地址:https://leetcod ...

  6. 2012 East Central Regional Contest 解题报告

    昨晚各种莫名其妙卡题. 不过细看这套题还挺简单的.全是各种暴力. 除了最后一道题计算几何看起来很麻烦的样子,其他题都是很好写的吧. A. Babs' Box Boutique 题目大意是给出不超过10 ...

  7. LeetCode 538 Convert BST to Greater Tree 解题报告

    题目要求 Given a Binary Search Tree (BST), convert it to a Greater Tree such that every key of the origi ...

  8. 【LeetCode】556. Next Greater Element III 解题报告(Python)

    [LeetCode]556. Next Greater Element III 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人 ...

  9. NOIP2012普及组 (四年后的)解题报告 -SilverN

    本章施工仍未完成 现在的时间是3.17 0:28,我困得要死 本来今天(昨天?)晚上的计划是把整个四道题的题解写出来,但是到现在还没写完T4的高效算法,简直悲伤. 尝试了用floyd写T4,终于大功告 ...

随机推荐

  1. BZOJ 3675: [Apio2014]序列分割( dp + 斜率优化 )

    WA了一版... 切点确定的话, 顺序是不会影响结果的..所以可以dp dp(i, k) = max(dp(j, k-1) + (sumn - sumi) * (sumi - sumj)) 然后斜率优 ...

  2. eclipse导出doc文档

    选中需要导出的项目, 1 点击eclipse上面的Project,选择Generate javadoc..., 2 然后配置 javadoc command,比如我本地的路径为: C:\Program ...

  3. hibernate 缓存 4.3

    缓存在hibernate中是天生就有的,是一级缓存,当session关闭时一级缓存就失效了 一级缓存是内置的,生效范围是在同一个session中才行.二级缓存是需要配置才有 判断当前项在不在一级缓存中 ...

  4. zkw费用流模版

    /************************************************************** Problem: 3876 User: wangck1998 Langu ...

  5. IT第十九天 - 继承、接口、多态、面向对象的编程思想

    IT第十九天 上午 继承 1.一般情况下,子类在继承父类时,会调用父类中的无参构造方法,即默认的构造方法:如果在父类中只写了有参的构造方法,这时如果在子类中继承时,就会出现报错,原因是子类继承父类时无 ...

  6. 1297 - Largest Box(三分)

    1297 - Largest Box   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB In t ...

  7. ubuntu ???????????? no permissions 问题解决

    近期的一个项目须要用到linux开发android程序! 发现ubuntu有小米开发连接不上!  搞了一个下午才搞成功! 看看吧! 小米手机利用USB连接到Ubuntu 10.04系统.执行以下的命令 ...

  8. Java:使用synchronized和Lock对象获取对象锁

    在并发环境下,解决共享资源冲突问题时,可以考虑使用锁机制. 1.对象的锁 所有对象都自动含有单一的锁. JVM负责跟踪对象被加锁的次数.如果一个对象被解锁,其计数变为0.在任务(线程)第一次给对象加锁 ...

  9. BestCoder Round #50 (div.1) 1003 The mook jong (HDU OJ 5366) 规律递推

    题目:Click here 题意:bestcoder 上面有中文题目 分析:令f[i]为最后一个木人桩摆放在i位置的方案,令s[i]为f[i]的前缀和.很容易就能想到f[i]=s[i-3]+1,s[i ...

  10. QT窗口置顶/真透明/背景模糊/非矩形/跳过任务栏分页器/无边框/无焦点点击/焦点穿透

    qt 窗口置顶/真透明/背景模糊/非矩形/跳过任务栏分页器/无边框/无焦点点击/焦点穿透 窗口置顶qt 里是 setWindowFlags(Qt::WindowStaysOnTopHint)kde 里 ...