题意: (欧洲人自己写的题面就是不一样啊...各种吐槽...果断还是看晕了)

有向图, 有个源叫CCS, 求从CCS到其他所有点的最短路之和, 以及从其他所有点到CCS的最短路之和.

思路:

返回的时候是多个源,但是因为终点只有一个,所以把所有边反向之后, 再SPFA一次源即可.

#include<cstdio>
#include<vector>
#include<queue>
const int MAXN=1000000+10;
typedef long long ll;
const ll inf=1e60;
using namespace std;
struct Node{
int v,w;
};
vector<Node>mp1[MAXN];//正向建图
vector<Node>mp2[MAXN];//反向建图
int n,m;
ll cost[MAXN]; void SPFA(int u,vector<Node>mp[]){
for(int i=2;i<=n;i++)cost[i]=inf;
cost[1]=0;
queue<int>Q;
Q.push(u);
while(!Q.empty()){
int u=Q.front();
Q.pop();
for(int i=0;i<mp[u].size();i++){
int v=mp[u][i].v;
int w=mp[u][i].w;
if(cost[v]>cost[u]+w){
cost[v]=cost[u]+w;
Q.push(v);
}
}
}
} int main(){
int _case;
scanf("%d",&_case);
while(_case--){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
mp1[i].clear();
mp2[i].clear();
}
for(int i=1;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
Node p1,p2;
p1.v=u,p2.v=v,p1.w=p2.w=w;
mp1[u].push_back(p2);
mp2[v].push_back(p1);
}
SPFA(1,mp1);//正向求一次
ll ans=0;
for(int i=2;i<=n;i++){
ans+=cost[i];
}
SPFA(1,mp2);//反向求一次
for(int i=2;i<=n;i++){
ans+=cost[i];
}
printf("%lld\n",ans);
}
return 0;
}

自己敲一遍:

#include <cstdio>
#include <vector>
#include <cstring>
#include <queue>
using namespace std;
typedef long long ll;
const int MAXN = 1e6+5;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
typedef struct node
{
int v,w;
node(){}
node(int _v, int _w):v(_v),w(_w){}
}node; int n,m;
bool inq[MAXN];
ll cost[MAXN];
vector<node> g1[MAXN],g2[MAXN]; ll SPFA(int op)
{
memset(cost,0x3f,sizeof(cost));
memset(inq,false,sizeof(inq));
cost[1] = 0;
queue<int> q;
q.push(1);
inq[1] = true;
while(!q.empty())
{
int now = q.front();q.pop();
inq[now] = false;
for(int i=0,v,w;i<((op==1)?g1[now].size():g2[now].size());i++)
{
if(op==1)
{
v = g1[now][i].v, w = g1[now][i].w;
}
else
{
v = g2[now][i].v, w = g2[now][i].w;
}
if(cost[v] > cost[now] + w)
{
cost[v] = cost[now] + w;
if(!inq[v])
{
q.push(v);
inq[v] = true;
}
}
}
}
ll ret = 0;
for(int i=2;i<=n;i++)
ret += cost[i];
return ret;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
{
g1[i].clear();
g2[i].clear();
}
for(int i=0,u,v,w;i<m;i++)
{
scanf("%d %d %d",&u,&v,&w);
g1[u].push_back(node(v,w));
g2[v].push_back(node(u,w));
}
ll ans = 0;
ans += SPFA(1);
ans += SPFA(2);
printf("%d\n",(int)ans);
}
}

[HDU 1535]Invitation Cards[SPFA反向思维]的更多相关文章

  1. hdu 1535 Invitation Cards(SPFA)

    Invitation Cards Time Limit : 10000/5000ms (Java/Other)   Memory Limit : 65536/65536K (Java/Other) T ...

  2. HDU 1535 Invitation Cards(SPFA,及其优化)

    题意: 有编号1-P的站点, 有Q条公交车路线,公交车路线只从一个起点站直接到达终点站,是单向的,每条路线有它自己的车费. 有P个人早上从1出发,他们要到达每一个公交站点, 然后到了晚上再返回点1. ...

  3. HDU 1535 Invitation Cards(最短路 spfa)

    题目链接: 传送门 Invitation Cards Time Limit: 5000MS     Memory Limit: 32768 K Description In the age of te ...

  4. HDU - 1535 Invitation Cards 前向星SPFA

    Invitation Cards In the age of television, not many people attend theater performances. Antique Come ...

  5. hdu 1535 Invitation Cards(spfa)

    Invitation Cards Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  6. HDU 1535 Invitation Cards(逆向思维+邻接表+优先队列的Dijkstra算法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1535 Problem Description In the age of television, n ...

  7. hdu 1535 Invitation Cards (最短路径)

    Invitation Cards Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  8. HDU 1535 Invitation Cards (最短路)

    题目链接 Problem Description In the age of television, not many people attend theater performances. Anti ...

  9. HDU 1535 Invitation Cards (POJ 1511)

    两次SPFA. 求 来 和 回 的最短路之和. 用Dijkstra+邻接矩阵确实好写+方便交换.可是这个有1000000个点.矩阵开不了. d1[]为 1~N 的最短路. 将全部边的 邻点 交换. d ...

随机推荐

  1. 在struts2的action中操作域对象(request、session)

    在struts2的Action中,操作域对象一共有三种方式: 1.ActionContext(与servelt API无关联): //相当于request ActionContext.getConte ...

  2. F5(调试)和服务器控件

    一.调试 背景: 今天调试的时候发现我进入的网址是http://×××.com:7813/webaspx/System/Login.aspx(由于代码在公司,我就没有截图,等了半天显示无法加载该页面) ...

  3. asp.net的3个经典范例(ASP.NET Starter Kit ,Duwamish,NET Pet Shop)学习资料

    asp.net的3个经典范例(ASP.NET Starter Kit ,Duwamish,NET Pet Shop)学习资料 NET Pet Shop .NET Pet Shop是一个电子商务的实例, ...

  4. android码农神器 偷懒工具 android懒人框架 LoonAndroid 3 讲解

    LoonAndroid 3.0 Loonandroid是一个注解框架,不涉及任何UI效果,目的是一个功能一个方法,以方法为最小颗粒度对功能进行拆解.把功能傻瓜化,简单化,去掉重复性的代码,隐藏复杂的实 ...

  5. NSArray使用小结

    http://blog.csdn.net/ms2146/article/details/8654263

  6. OpenSuse13.2硬盘安装

    直接参考文章:OpenSuse硬盘安装 补充: Win7引导Grub4dos时,本人尝试根据xp引导方式中使用boot.ini来引导,引导成功,不需要bcdedit命令,简化了引导步骤.

  7. Python 学习日记(第三周)

    知识回顾 在上一周的学习里,我学习了一些学习Python的基础知识下面先简短的回顾一些: 1Python的版本和和安装 Python的版本主要有2.x和3.x两个版本这两个版本在语法等方面有一定的区别 ...

  8. Django数据迁移

    http://www.ziqiangxuetang.com/django/django-data-migration.html

  9. Eclipse开发Python项目

    最近倒腾python自带的开发工具idle,用的很不习惯,还是用Eclipse编写python项目方便(自动补齐,智能报错,调试方便),下面就说说怎么用Eclipse编写python代码吧~ 1.安装 ...

  10. FMDB官方使用文档-GCD的使用-提高性能(翻译)

    FMDB官方使用文档-GCD的使用-提高性能(翻译) 发布于:2013-08-19 10:01阅读数:13395 由于FMDB是建立在SQLite的之上的,所以你至少也该把这篇文章从头到尾读一遍.与此 ...