str2int

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1568    Accepted Submission(s): 540

Problem Description
In this problem, you are given several strings that contain only digits from '0' to '9', inclusive.
An example is shown below.
101
123
The set S of strings is consists of the N strings given in the input file, and all the possible substrings of each one of them.
It's boring to manipulate strings, so you decide to convert strings in S into integers.
You can convert a string that contains only digits into a decimal integer, for example, you can convert "101" into 101, "01" into 1, et al.
If an integer occurs multiple times, you only keep one of them. 
For example, in the example shown above, all the integers are 1, 10, 101, 2, 3, 12, 23, 123.
Your task is to calculate the remainder of the sum of all the integers you get divided by 2012.
 
Input
There are no more than 20 test cases.
The test case starts by a line contains an positive integer N.
Next N lines each contains a string consists of one or more digits.
It's guaranteed that 1≤N≤10000 and the sum of the length of all the strings ≤100000.
The input is terminated by EOF.
 
Output
An integer between 0 and 2011, inclusive, for each test case.
 
Sample Input
5
101
123
09
000
1234567890
 
Sample Output
202
 
Source
 

题意: n个字符串,对于每一个子串可以表示为一个数字, 求所有子串的数字和相加对2012取模,, 相同数字只算一次。

这题可以先把n个字符串用一个没有出现过的字符隔开连起来。然后求sa, lcp。

我们可以先看一个简单的例子。

s = 12345

num[1] = 1             sum[1] = 1

num[2] = 12           sum[2] = 1 + 12

num[3] = 123         sum[3] = 1 + 12 + 123

num[4] = 1234       sum[4] = 1 + 12 + 123 + 1234

num[5] = 12345     sum[5] = 1 + 12 + 123 + 1234 + 12345

如果求[3, 4]  , 只需要 sum[5] - sum[2] - num[2] * (10 + 100 + 1000);

判重时 只要从 i+ lcp[rank[i]]  开始算就可以了,,因为公共前缀那一部分 在前面已经算了。

上代码。。

 #include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const double eps = 1e-;
const int mod = ;
const int maxn = 2e5+;
int sum [maxn], num[maxn];
string s;
int sa[maxn], Rank[maxn], tmp[maxn], lcp[maxn];
int k, len;
bool cmp(int i, int j)
{
if (Rank[i] != Rank[j])
return Rank[i] < Rank[j];
else
{
int x = (i+k <= len ? Rank[i+k] : -);
int y = (j+k <= len ? Rank[j+k] : -);
return x < y;
}
}
void build_sa()
{
for (int i = ; i <= len; i++)
{
sa[i] = i;
Rank[i] = (i < len ? s[i] : -);
}
for (k = ; k <= len; k *= )
{
sort (sa,sa+len+,cmp);
tmp[sa[]] = ;
for (int i = ; i <= len; i++)
{
tmp[sa[i]] = tmp[sa[i-]] + (cmp(sa[i-],sa[i])? : );
}
for (int i = ; i <= len; i++)
Rank[i] = tmp[i];
}
} void Get_lcp()
{
for (int i = ; i < len; i++)
Rank[sa[i]] = i;
int h = ;
lcp[] = ;
for (int i = ; i < len; i++)
{
int j = sa[Rank[i]-];
if (h > )
h--;
for (; h+i < len && h+j < len; h++)
if (s[i+h] != s[j+h])
break;
lcp[Rank[i]] = h;
}
}
bool isdigit(char &ch)
{
return ch >= '' && ch <= '';
}
int vec[maxn], board[maxn], tot;
int SUM[maxn];
int solve (int l, int r)
{
if (l > r)
return ;
int res ;
res = sum[r] - sum[l-];
res = ((res%mod)+mod)%mod;
res -= num[l-] * SUM[r-l+];
res = ((res%mod)+mod)%mod;
return ((res%mod)+mod)%mod;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
int n;
SUM[] = ;
for (int i = ; i < maxn; i++)
{
SUM[i] = (SUM[i-] + ) * % mod;
}
while (~scanf ("%d", &n))
{
s = "\0";
tot = ;
memset(sum, , sizeof(sum));
memset(num, , sizeof(num));
for (int i = ; i < n; i++)
{
string tmp;
cin >> tmp;
s += tmp + "#";
}
len = s.size();
int val = ;
for (int i = ; i < len; i++)
{
if (s[i] != '#')
{
val = (val * + s[i] - '') % mod;
num[i] = val;
sum[i] = (sum[i-] + num[i]) % mod;
board[i] = tot;
}
if (s[i] == '#')
{
vec[tot++] = i;
num[i] = val;
sum[i] = sum[i-] + val;
}
}
build_sa();
Get_lcp();
int ans = ;
for (int i = ; i < len; i++)
{
int t1 = i + lcp[Rank[i]];
if (s[i] == '')
continue;
if (isdigit(s[i]) && i+lcp[Rank[i]] < vec[board[i]])
{
int t2 = vec[board[i]] -;
int ans1 = solve(i, t2);
int ans2 = solve(i , t1-);
ans = (ans + solve(i, t2) - solve(i, t1-)) % mod;
if (ans < )
ans += mod;
}
}
printf("%d\n", ans%mod);
}
return ;
}

HDU4436---str2int 后缀树组(12年天津区域赛)的更多相关文章

  1. 【BZOJ-1396&2865】识别子串&字符串识别 后缀自动机/后缀树组 + 线段树

    1396: 识别子串 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 312  Solved: 193[Submit][Status][Discuss] ...

  2. FZU 2137 奇异字符串 后缀树组+RMQ

    题目连接:http://acm.fzu.edu.cn/problem.php?pid=2137 题解: 枚举x位置,向左右延伸计算答案 如何计算答案:对字符串建立SA,那么对于想双延伸的长度L,假如有 ...

  3. SPOJ694 -- DISUBSTR 后缀树组求不相同的子串的个数

    DISUBSTR - Distinct Substrings   Given a string, we need to find the total number of its distinct su ...

  4. POJ3581---Sequence 后缀树组

    题意:n个数字组成的序列,第一个数字最大,,把序列分成3部分,每个部分分别翻转,输出翻转后字典序最小的序列.. 后缀数组变一下,,先求出 第一个分割的位置,,然后再求一次后缀数组,,求出第二个位置.. ...

  5. CF504E Misha and LCP on Tree(树链剖分+后缀树组)

    1A真舒服. 喜闻乐见的树链剖分+SA. 一个初步的想法就是用树链剖分,把两个字符串求出然后hash+二分求lcp...不存在的. 因为考虑到这个字符串是有序的,我们需要把每一条重链对应的字符串和这个 ...

  6. [hdu4436 str2int]后缀自动机SAM(或后缀数组SA)

    题意:给n个数字串,求它们的所有不包含前导0的不同子串的值之和 思路:把数字串拼接在一起,构造SAM,然后以每个状态的长度len作为特征值从小到大排序,从前往后处理每个状态,相当于按拓扑序在图上合并计 ...

  7. 【2012天津区域赛】部分题解 hdu4431—4441

    1001: 题意:给你13张麻将牌,问可以胡哪些张 思路: 枚举可能接到的牌,然后dfs判断能否胡 1002: 题意: 已知n,m 求 n的所有约数在m进制下的平方和 做法:队长用java高精度写的 ...

  8. ACM学习历程——HDU4472 Count(数学递推) (12年长春区域赛)

    Description Prof. Tigris is the head of an archaeological team who is currently in charge of an exca ...

  9. ACM学习历程——HDU4814 Golden Radio Base(数学递推) (12年成都区域赛)

    Description Golden ratio base (GRB) is a non-integer positional numeral system that uses the golden ...

随机推荐

  1. Laravel 4 Quick Tip: Custom Error Pages

    App::error(function($exception, $code) { switch ($code) { case 403: return Response::view('errors.40 ...

  2. shell 脚本实现的守护进程

    转自:http://blog.csdn.net/cybertan/article/details/3235722 转自:http://blog.sina.com.cn/s/blog_4c451e0e0 ...

  3. Configuring the JA-SIG CAS Client --官方

    1. for Java using Spring Configuration of the CAS Client for Java via Spring IoC will depend heavily ...

  4. 《UNIX网络编程》之多客户连接服务端,可重用套接字对

    该网络编程之客户端与服务端程序模板支持: 1. 多客户端同时连接服务端,即服务程序可以同时为多个客户端服务: 2. 服务端支持套接字对重用,即即使处于TIME_WAIT状态,仍可支持服务端重启: 3. ...

  5. sql 处理以字符隔开的字符串(类似split)

    sql 处理以字符隔开的字符串(类似split)的处理方法. CREATE PROCEDURE dbo.Vip_SendMails @userids varchar(MAX), ), ), @c va ...

  6. AsyncTask两种线程池

        AsyncTask两种线程池  http://bbs.51cto.com/thread-1114378-1.html (API 3.0以后): 1.THREAD_POOL_EXECUTOR, ...

  7. yii cgridview 对生成的数据进行分页

    这个其实最简单 在对应的model里找Search方法 找到后,参见如下代码 public function search() { // @todo Please modify the followi ...

  8. C#中的序列化与反序列化

    眼看XX鸟的课程关于C#的知识点就要学完了,翻看网络中流传的教程还是发现了一个课程中没有讲到的知识点:序列化与反序列化 无奈还是了解一下并操作一番,以备后用吧 介绍:就是将对象信息转化为二进制信息以便 ...

  9. PHP编程规范

    好的编程规范不仅是对阅读者的负责,也是对自身的负责: ----割---- 一直以来我都是以php函数的风格来写php,所有变量,函数,类都使用小写,单词之间以下划线隔开,一直比较排斥驼峰式的代码规范, ...

  10. PHP Cookies

    PHP Cookies cookie 常用于识别用户. Cookie 是什么? cookie 常用于识别用户.cookie 是一种服务器留在用户计算机上的小文件.每当同一台计算机通过浏览器请求页面时, ...