0.linux内核异常常用分析方法

  1. 异常地址是否在0附近,确认是否是空指针解引用问题
  2. 异常地址是否在iomem映射区,确认是否是设备访问总线异常问题,如PCI异常导致的地址访问异常
  3. 异常地址是否在stack附近,如果相邻,要考虑是否被踩
  4. 比较delay reset/nmi watchdog等多种机制打印的栈信息,看看pc是否在动,确定是否是死锁
  5. 用SysRq判断是真死还是假死
  6. 通过反汇编获得发生异常的C代码段和函数,查找开源社区是否已有补丁修复

下面分别通过PowerPC和Mips64的2个异常例子详细讲解分析过程。

1.PowerPC小系统内核异常分析

1.1  异常打印

Unable to handle kernel paging request for data at address 0x36fef31e
Faulting instruction address: 0xc0088b8c
Oops: Kernel access of bad area, sig: 11 [#1]
PREEMPT SMP NR_CPUS=2
Modules linked in: ossmod tipc ohci_hcd ehci_hcd cmm uart1655x bcm334 bootflash mtdchar bsp_flash_init boardctrl 85xx_debug util
NIP: C0088B8C LR: C0088CF8 CTR: 00000000
REGS: ce283e20 TRAP: 0300 Not tainted (2.6.21.7-EMBSYS-CGEL-3.04.10.P6.F5)
MSR: 00021000 <ME> CR: 22004222 XER: 00000000
DAR: 36FEF31E, DSISR: 00800000
TASK = cffdf180[26] 'events/1' THREAD: ce282000 CPU: 1
GPR00: 00100100 CE283ED0 CFFDF180 CF528000 C09EA500 EFFEAD20 CF5188A0 00000000
GPR08: CF5188BC 00200200 36FEF31E D1FD7F9E 22004222 1010DA44 00000290 00000000
GPR16: 1011C858 100147F4 BF9BC9C4 10100000 00000001 C0460000 C06454CC 00000000
GPR24: C0640000 CE282000 C0640000 00000005 00000000 00000000 EFFE8EC0 CFFED958
NIP [C0088B8C] free_block+0xc4/0x16c
LR [C0088CF8] drain_array+0xc4/0x100
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Call Trace:
[CE283ED0] [C06ABEC0] 0xc06abec0(unreliable)
[CE283EF0] [C0088CF8] drain_array+0xc4/0x100
[CE283F10] [C008A70C] cache_reap+0x94/0x13c
[CE283F30] [C003DA2C] run_workqueue+0xc4/0x198
[CE283F60] [C003E6D4] worker_thread+0x130/0x154
[CE283FB0] [C0042E80] kthread+0xd4/0x110
[CE283FF0] [C0011A70] original_kernel_thread+0x44/0x60

Instruction dump:
5400cffe 0f000000 80c4001c 7d1cf214 3c000010 3d200020 80a8001c 60000100
81660000 61290200 81460004 3906001c <916a0000> 914b0004 90060000 91260004
------------[ cut here ]------------
Badness at c0011e4c [verbose debug info unavailable]
Call Trace:
[CE283C50] [C00080BC] show_stack+0x3c/0x1a0 (unreliable)
[CE283C80] [C018EA28] report_bug+0xb0/0xb8
[CE283C90] [C000EC94] program_check_exception+0xcc/0x4f8
[CE283CD0] [C0010BE4] ret_from_except_full+0x0/0x4c
[CE283D90] [C0640000] 0xc0640000
[CE283DD0] [C000E61C] die+0x1f0/0x27c
[CE283E00] [C0014B18] bad_page_fault+0x98/0xe8
[CE283E10] [C0010A88] handle_page_fault+0x7c/0x80
[CE283ED0] [C06ABEC0] 0xc06abec0
[CE283EF0] [C0088CF8] drain_array+0xc4/0x100
[CE283F10] [C008A70C] cache_reap+0x94/0x13c
[CE283F30] [C003DA2C] run_workqueue+0xc4/0x198
[CE283F60] [C003E6D4] worker_thread+0x130/0x154
[CE283FB0] [C0042E80] kthread+0xd4/0x110
[CE283FF0] [C0011A70] original_kernel_thread+0x44/0x60

1.2  Oops分析

Oops: Kernel access of bad area, sig: 11 [#1]

异常分类

Oops:内核态指令异常;

BUG:内核检测到逻辑异常(类似于assert),会影响内核的后续运行;

WARNING:类似于BUG,但是不会影响内核的后续运行;

PANIC:类似于BUG,系统不能继续运行,直接挂起或重启;

SOFTLOCK:长时间任务得不到调度;

异常信号

Signal

Code

Default Action

Description

SIGABRT

6

A

Process abort signal

SIGALRM

14

T

Alarm clock

SIGBUS

10

A

Access to an undefined portion of a memory object

SIGCHLD

18

I - Ignore the Signal

Child process terminated, stopped,

SIGCONT

25

C - Continue the process

Continue executing, if stopped.

SIGFPE

8

A

Erroneous arithmetic operation.

SIGHUP

1

T

Hangup.

SIGILL

4

A

Illegal instruction.

SIGINT

2

T

Terminal interrupt signal.

SIGKILL

9

T

Kill (cannot be caught or ignored).

SIGPIPE

13

T - Abnormal termination of the process

Write on a pipe with no one to read it.

SIGQUIT

3

A - Abnormal termination of the process

Terminal quit signal.

SIGSEGV

11

A

Invalid memory reference.

SIGSTOP

23

S - Stop the process

Stop executing (cannot be caught or ignored).

SIGTERM

15

T

Termination signal.

SIGTSTP

23

S

Terminal stop signal.

SIGTTIN

26

S

Background process attempting read.

SIGTTOU

27

S

Background process attempting write.

SIGUSR1

16

T

User-defined signal 1.

SIGUSR2

17

T

User-defined signal 2.

SIGPOLL

22

T

Pollable event.

SIGPROF

29

T

Profiling timer expired.

SIGSYS

12

A

Bad system call.

SIGTRAP

5

A

Trace/breakpoint trap.

SIGURG

21

I

High bandwidth data is available at a socket.

SIGVTALRM

28

T

Virtual timer expired.

SIGXCPU

30

A

CPU time limit exceeded.

SIGXFSZ

31

A

File size limit exceeded

Default Actions:

T - Abnormal termination of the process. The process is terminated with all the consequences of _exit() except that the status made available to wait() and waitpid() indicates abnormal termination by the specified signal.

A - Abnormal termination of the process. Additionally, implementation-defined abnormal termination actions, such as creation of a core file, may occur.

I - Ignore the signal.

S - Stop the process.

C - Continue the process, if it is stopped; otherwise, ignore the signal.

具体针对powerpc e500内核,异常与信号的对应关系如下:

所以有进程访问了超出其虚拟地址空间的地址,内核报SIGSEGV(segment fault)信号。

那是什么进程呢?

其他

#1,die_counter,表示Oops发生的次数,一般来说,如果有多条Oops,看第一条Oops信息,因为后面的Oops可能是第一条Oops的错误传播导致的。

1.3  寄存器分析

NIP: C0088B8C LR: C0088CF8 CTR: 00000000

NIP是next instruction pointer,值就是当前指令的地址。这里列出了3个寄存器的值。

LR是link register其值为上一条指令的地址。

CTR是count register,其值用于循环指令。

REGS: ce283e20 TRAP: 0300   Not tainted  (2.6.21.7-EMBSYS-CGEL-3.04.10.P6.F5)

TRAP :异常处理函数入口地址;REGS :系统栈pt_regs的基址。pt_regs这个结构封装了需要在内核入口中保存的最少的状态信息。比如说每一次的系统调用、中断、陷阱、故障。

0x100:    "(System Reset)"

0x200:    "(Machine Check)"

0x300:    "(Data Access)"

0x380:    "(Data SLB Access)"

0x400:    "(Instruction Access)"

0x480:    "(Instruction SLB Access)"

0x500:    "(Hardware Interrupt)"

0x600:    "(Alignment)"

0x700:    "(Program Check)"

0x800:    "(FPU Unavailable)"

0x900:    "(Decrementer)"

0xc00:     "(System Call)"

0xd00:    "(Single Step)"

0xf00:     "(Performance Monitor)"

0xf20:     "(Altivec Unavailable)"

0x1300:   "(Instruction Breakpoint)"

详细解释见《PowerPC™ e500 Core Family Reference Manual》“5.7 Interrupt Definitions”。

tainted :内核错误信息,由add_taint设置,解释如下:

*  'P' - Proprietary module has been loaded.

*  'F' - Module has been forcibly loaded.

*  'S' - SMP with CPUs not designed for SMP.

*  'R' - User forced a module unload.

*  'M' - System experienced a machine check exception.

*  'B' - System has hit bad_page.

*  'U' - Userspace-defined naughtiness.

*  'D' - Kernel has oopsed before

*  'A' - ACPI table overridden.

*  'W' - Taint on warning.

*  'C' - modules from drivers/staging are loaded.

MSR: 00021000 <ME>  CR: 22004222  XER: 00000000

DAR: 36FEF31E, DSISR: 00800000

MSR是machine state register;

CR是condition register;

XER为Integer Exception Register

DAR为data address register,其值为造成了内存访问异常的地址。E500中为Data Exception Address Register (DEAR)

DSISR为Data Storage Interrupt Status Register,是存储着发生内存访问异常原因的寄存器。E500中为Exception Syndrome Register (ESR)。0x00800000表示Store operation中的Alignment, data storage, data TLB error异常。

TASK = cffdf180[26] 'events/1' THREAD: ce282000 CPU: 1

cffdf180:进程task_struct结构体的地址;

26:进程号;

events/1:进程名;

THREAD:进程的内核栈起始地址;

CPU:当前CPU;

当前进程也就是'events/1进程,出现SIGSEGV异常了。

GPR00: 00100100 CE283ED0 CFFDF180 CF528000 C09EA500 EFFEAD20 CF5188A0 00000000

GPR08: CF5188BC 00200200 36FEF31E D1FD7F9E 22004222 1010DA44 00000290 00000000

GPR16: 1011C858 100147F4 BF9BC9C4 10100000 00000001 C0460000 C06454CC 00000000

GPR24: C0640000 CE282000 C0640000 00000005 00000000 00000000 EFFE8EC0 CFFED958

PowerPC的ABI规定的寄存器的使用规则如下:

(1)GPR0:属于易失性寄存器,ABI规定普通用户不能使用此寄存器。GCC编译器用此寄存器来保存LR寄存器,Linux PowerPC用此寄存器来传递系统调用号码。

(2)GPR1:属于专用寄存器,ABI规定用次寄存器来保存堆栈的栈顶指针。

(3)GPR2:属于专用寄存器,ABI规定普通用户不使用才寄存器,Linux PowerPC用此寄存器来保存当前进程的进程描述符地址。

(4)GPR3-GPR4:属于易失性寄存器,ABI使用这两个寄存器来保存函数的返回值,或者用来传递参数。

(5)GPR5-GPR10:也属于易失性寄存器,加上GPR3和GPR4共8个寄存器用来传递函数的参数。当函数的参数超过八个时使用堆栈来传递。

(6)GPR11-GPR12:属于易失性寄存器,ABI规定普通用户不使用该寄存器,Linux PowerPC有时用这两个寄存器来存放临时变量,但是GCC编译器没有使用这两个寄存器。

(7)GPR13:属于专用寄存器,ABI规定该寄存器sdata段的基地址指针。Linux PowerPC在系统初始化时使用该寄存器来存放临时变量。GCC有时会根据某些规则将一些常用的数据放入sdata或者sbss段中。应用程序对sdata或者sbss段数据的访问与对data和bss段数据的访问机制不同,访问sdata段的数据速度更快。

(8)GPR14-GPR31:属于非易失性寄存器。ABI使用这些寄存器来存放一些临时变量,在应用程序中可以自由使用这些变量。

1.4  调用栈分析

调用链

NIP [C0088B8C] free_block+0xc4/0x16c

LR [C0088CF8] drain_array+0xc4/0x100

Call Trace:

[CE283ED0] [C06ABEC0] 0xc06abec0(unreliable)

[CE283EF0] [C0088CF8] drain_array+0xc4/0x100

[CE283F10] [C008A70C] cache_reap+0x94/0x13c

[CE283F30] [C003DA2C] run_workqueue+0xc4/0x198

[CE283F60] [C003E6D4] worker_thread+0x130/0x154

[CE283FB0] [C0042E80] kthread+0xd4/0x110

[CE283FF0] [C0011A70] original_kernel_thread+0x44/0x60

Instruction dump:

5400cffe 0f000000 80c4001c 7d1cf214 3c000010 3d200020 80a8001c 60000100

81660000 61290200 81460004 3906001c <916a0000> 914b0004 90060000 91260004

[CE283FB0] [C0042E80] kthread+0xd4/0x110

CE283FB0:栈地址;

C0042E80:栈上保存的LR值,即函数返回地址。

kthread:函数名;

0xd4/0x110:异常指令偏移/调用函数长度。

static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, int node)

从调用栈上看,内核在drain_array中调用free_block出现异常,查看free_block原型,对比入栈参数(CF528000 C09EA500 EFFEAD20 CF5188A0),可以发现int nr_objects, int node明显异常,可能推断调用栈可能已经被踩。

指令码

Instruction dump:
5400cffe 0f000000 80c4001c 7d1cf214 3c000010 3d200020 80a8001c 60000100
81660000 61290200 81460004 3906001c <916a0000> 914b0004 90060000 91260004

Instruction dump打印出NIP附近的指令字节码。其中<916a0000>为NIP的指令码。

反汇编定位

objump -dS vmlinux > /tmp/kernel.s

通过查找<916a0000>对应的C代码,确定具体那句C代码出现异常。

其中vmlinux为已打开调试信息的,与故障相同版本的内核镜像。

2.MIPS小系统内核异常分析

 

2.1  异常打印

0:Oops[#1]:

0:Cpu 0

0:Show thread info from vcpu 0

0: VCPU   Stack bottom      Task                  Ti at

0:  0    c000000595057fe0    swapper              c000000595054000

0:Thread info( c000000595054000 ):

0:    Process swapper (pid: 1)

0:  exec_domain ffffffffc0f299b0

0:  flags 100000

0:  tp_value 0

0:  cpu 0

0:  preempt_count 2

0:  regs (null)

0:STACK_END_MAGIC at va( c000000595054068 ): 57AC6E9D( =? 57AC6E9D)

0:

0:$ 0   :  0: 0000000000000000  0: 0000000000000000  0: 0000000000000000  0: 0000000000000001  0:

0:$ 4   :  0: 0000000000000000  0: 0000000000000000  0: ffffffffffffffff  0: 0000000000002976  0:

0:$ 8   :  0: 0000000000007fff  0: 000000000000000a  0: 5f73746172747570  0: 000000000000006c  0:

0:$12   :  0: 0000000000000068  0: 000000000000004c  0: ffffffffc10bc384  0: c000000593338000  0:

0:$16   :  0: 0000000000000000  0: ffffffffc10e42b8  0: ffffffffc10e0000  0: ffffffffc10e0000  0:

0:$20   :  0: 0000000000000000  0: 0000000000000080  0: 0000000000000080  0: 0000000000000000  0:

0:$24   :  0: 0000000000000006  0: ffffffffc06501a8  0:                   0:                   0:

0:$28   :  0: c000000595054000  0: c000000595057c88  0: 0000000000000000  0: ffffffffc087bf40  0:

0:Hi    : 0000000000000000

0:Lo    : 0000000000000000

0:epc   : ffffffffc087c4b4 _bcore_cleanup+0x34/0x190

0:    Not tainted

0:ra    : ffffffffc087bf40 _init+0x3e8/0x480

0:Status: 5400ffe3      0:KX   0:SX   0:UX   0:KERNEL   0:EXL   0:IE   0:

0:Cause : 00800008

0:BadVA : 0000000000000008

0:PrId  : 000c1102 (XLP316   A2  )

0:<d>Modules linked in:  0:

0:Process swapper (pid: 1, threadinfo=c000000595054000, task=c000000595053898, tls=0000000000000000)

0:Stack :  0: ffffffffffffffff  0: ffffffffc10e0000  0: c000000595193240  0: 0000000000000001  0:

0: ffffffffc104365c  0: ffffffffc087bf40  0: 000001fac104365c  0: ffffffffc087cb30  0:

0: ffffffffc087c3a8  0: 0000000000000000  0: ffffffffc0f4a778  0: c000000595193000  0:

0: c000000595193240  0: 0000000000000001  0: ffffffffc10e0000  0: c000000595193240  0:

0: 0000000000000001  0: ffffffffc104365c  0: 0000000000000000  0: 0000000000000080  0:

0: 0000000000000080  0: ffffffffc1043c44  0: 00008a17bc300000  0: ffffffffc10e0000  0:

0: c00000059333dd40  0: 0000000000000000  0: 3800000000000000  0: 0000000000000000  0:

0: 000000009333dd40  0: ffffffffc1043638  0: 000000005400ffe0  0: ffffffffbfff00fe  0:

0: ffffffffc1070000  0: ffffffffc1063200  0: 0000000000000001  0: ffffffffc104365c  0:

0: 0000000000000000  0: 0000000000000080  0: 0000000000000080  0: 0000000000000000  0:

0: ...  0:

0:Call Trace: [jiffies: 0xfffff79f]

0:[<ffffffffc087c4b4>] _bcore_cleanup+0x34/0x190

0:[<ffffffffc087bf40>] _init+0x3e8/0x480

0:[<ffffffffc1043c44>] bcmxgs_init_module+0x5e8/0xc00

0:[<ffffffffc060eebc>] do_one_initcall+0x3c/0x1a0

0:[<ffffffffc102cc04>] kernel_init+0x220/0x2b8

0:[<ffffffffc062c730>] kernel_thread_helper+0x10/0x20

0:

0:

Code:  0: ffbf0028   0: 0000802d   0: 663142b8   0:<dc420008>  0: 0040f809   0: 00000000   0: 0202102a   0: 1040001d   0: 00000000

0:

0:<4>Disabling lock debugging due to kernel taint

2.2  异常信号

异常与信号之间的关系:

2.3  线程信息分析

0:Cpu 0:这2个0为当前CPU核ID;

0:Show thread info from vcpu 0

0: VCPU   Stack bottom      Task                  Ti at

0:  0    c000000595057fe0    swapper              c000000595054000

VCPU:CPU核;

Stack bottom:栈底指针;

Task:线程名;

Ti at:线程thread_info结构体指针;

0:Thread info( c000000595054000 ):

0:    Process swapper (pid: 1)

0:  exec_domain ffffffffc0f299b0

0:  flags 100000

0:  tp_value 0

0:  cpu 0

0:  preempt_count 2

0:  regs (null)

0:STACK_END_MAGIC at va( c000000595054068 ): 57AC6E9D( =? 57AC6E9D)

flags :线程标志位,具体标记如下表。此时值为TIF_FIXADE,表示有address errors。Thread info( c000000595054000 ):产生异常的线程信息;下面的字段为thread_info结构体中的字段信息。其中,

preempt_count:为抢占计数。为0时,内核可以安全的执行抢占此线程。不为0,表示当前进程持有锁不能释放CPU控制权(不能被抢占)。

STACK_END_MAGIC:栈底部的魔幻数,可以辅助判断栈是否被踩。

#define TIF_SIGPENDING		1	/* signal pending */
#define TIF_NEED_RESCHED 2 /* rescheduling necessary */
#define TIF_SYSCALL_AUDIT 3 /* syscall auditing active */
#define TIF_SECCOMP 4 /* secure computing */
#define TIF_NOTIFY_RESUME 5 /* callback before returning to user */
#define TIF_RESTORE_SIGMASK 9 /* restore signal mask in do_signal() */
#define TIF_USEDFPU 16 /* FPU was used by this task this quantum (SMP) */
#define TIF_POLLING_NRFLAG 17 /* true if poll_idle() is polling TIF_NEED_RESCHED */
#define TIF_MEMDIE 18
#define TIF_FREEZE 19
#define TIF_FIXADE 20 /* Fix address errors in software */
#define TIF_LOGADE 21 /* Log address errors to syslog */
#define TIF_32BIT_REGS 22 /* also implies 16/32 fprs */
#define TIF_32BIT_ADDR 23 /* 32-bit address space (o32/n32) */
#define TIF_FPUBOUND 24 /* thread bound to FPU-full CPU set */
#define TIF_LOAD_WATCH 25 /* If set, load watch registers */
#define TIF_XKPHYS_MEM_EN 26
#define TIF_XKPHYS_IO_EN 27
#define TIF_SYSCALL_TRACE 31 /* syscall trace active */

2.4  寄存器分析

0:$ 0   :  0: 0000000000000000  0: 0000000000000000  0: 0000000000000000  0: 0000000000000001  0:

0:$ 4   :  0: 0000000000000000  0: 0000000000000000  0: ffffffffffffffff  0: 0000000000002976  0:

0:$ 8   :  0: 0000000000007fff  0: 000000000000000a  0: 5f73746172747570  0: 000000000000006c  0:

0:$12   :  0: 0000000000000068  0: 000000000000004c  0: ffffffffc10bc384  0: c000000593338000  0:

0:$16   :  0: 0000000000000000  0: ffffffffc10e42b8  0: ffffffffc10e0000  0: ffffffffc10e0000  0:

0:$20   :  0: 0000000000000000  0: 0000000000000080  0: 0000000000000080  0: 0000000000000000  0:

0:$24   :  0: 0000000000000006  0: ffffffffc06501a8  0:                   0:                   0:

0:$28   :  0: c000000595054000  0: c000000595057c88  0: 0000000000000000  0: ffffffffc087bf40  0:

0:Hi    : 0000000000000000

0:Lo    : 0000000000000000

0:epc   : ffffffffc087c4b4 _bcore_cleanup+0x34/0x190

0:    Not tainted

0:ra    : ffffffffc087bf40 _init+0x3e8/0x480

0:Status: 5400ffe3      0:KX   0:SX   0:UX   0:KERNEL   0:EXL   0:IE   0:

0:Cause : 00800008

0:BadVA : 0000000000000008

0:PrId  : 000c1102 (XLP316   A2  )

Mips核心寄存器组有4组,分别是GP, COP0, COP1, COP2。

其中COP0几个重要的寄存器解释如下:

Status:c0p0状态cp0_status。其中EXL标示在异常模式中,具体解释请参照《参考资料6.7 第193页》

Cause:00800008,标示 TLB exception(load or instruction fetch)

BadVA:产生异常的虚拟地址,如地址错误、无效的TLB,TLB modified等等。

2.5  调用栈分析

0:Process swapper (pid: 1, threadinfo=c000000595054000, task=c000000595053898, tls=0000000000000000)

0:Stack :  0: ffffffffffffffff  0: ffffffffc10e0000  0: c000000595193240  0: 0000000000000001  0:

0: ffffffffc104365c  0: ffffffffc087bf40  0: 000001fac104365c  0: ffffffffc087cb30  0:

0: ffffffffc087c3a8  0: 0000000000000000  0: ffffffffc0f4a778  0: c000000595193000  0:

0: c000000595193240  0: 0000000000000001  0: ffffffffc10e0000  0: c000000595193240  0:

0: 0000000000000001  0: ffffffffc104365c  0: 0000000000000000  0: 0000000000000080  0:

0: 0000000000000080  0: ffffffffc1043c44  0: 00008a17bc300000  0: ffffffffc10e0000  0:

0: c00000059333dd40  0: 0000000000000000  0: 3800000000000000  0: 0000000000000000  0:

0: 000000009333dd40  0: ffffffffc1043638  0: 000000005400ffe0  0: ffffffffbfff00fe  0:

0: ffffffffc1070000  0: ffffffffc1063200  0: 0000000000000001  0: ffffffffc104365c  0:

0: 0000000000000000  0: 0000000000000080  0: 0000000000000080  0: 0000000000000000  0:

0: ...  0:

0:Call Trace: [jiffies: 0xfffff79f]

0:[<ffffffffc087c4b4>] _bcore_cleanup+0x34/0x190

0:[<ffffffffc087bf40>] _init+0x3e8/0x480

0:[<ffffffffc1043c44>] bcmxgs_init_module+0x5e8/0xc00

0:[<ffffffffc060eebc>] do_one_initcall+0x3c/0x1a0

0:[<ffffffffc102cc04>] kernel_init+0x220/0x2b8

0:[<ffffffffc062c730>] kernel_thread_helper+0x10/0x20

0:

0:

Code:  0: ffbf0028   0: 0000802d   0: 663142b8   0:<dc420008>  0: 0040f809   0: 00000000   0: 0202102a   0: 1040001d   0: 00000000

0:

Call Trace:出现异常线程的调用栈信息。Stack:出现异常线程的堆栈信息。

Code:异常附近的指令码打印。其中0:<dc420008>为epc处的指令码,对应代码位置为(epc   : ffffffffc087c4b4 _bcore_cleanup+0x34/0x190)。具体代码需要反汇编定位。

反汇编定位方法与Powerpc的相同。

分析代码可知,异常由于访问了BadVA : 0000000000000008的非法地址,查看_bcore_cleanup代码,可知此时bde指针没有初始化,是空指针,所以bde->num_devices的地址刚好是0000000000000008,导致异常。

异常代码段如下:

_bcore_cleanup(void)

{

for (unit = 0; unit < bde->num_devices(BDE_ALL_DEVICES); unit++)

6.参考资料

6.1         http://en.wikipedia.org/wiki/Unix_signal

6.2         http://www.powerlinuxchina.net/club/viewthread.php?tid=981

6.3         《PowerPC™ e500 Application Binary Interface User’s Guide》

6.4         《PowerPC™ e500 Core Family Reference Manual》

6.5         《MPC8572E PowerQUICC™ III Integrated Host Processor Family Reference Manual》

6.6         《SYSTEM V APPLICATION BINARY INTERFACE – MIPS RISC Processor Supplement》

6.7         《XLP 300-/300-Lite-Series-Processor Programmer’s Register Reference Guide》

6.8         http://blog.chinaunix.net/uid-16459552-id-3459993.html

6.9         http://blog.chinaunix.net/uid-16459552-id-3257539.html

6.10     http://www.linuxspy.info/2249/tainted-kernel/

--EOF--

Linux Kernel Oops异常分析的更多相关文章

  1. Linux kernel workqueue机制分析

    Linux kernel workqueue机制分析 在内核编程中,workqueue机制是最常用的异步处理方式.本文主要基于linux kernel 3.10.108的workqueue文档分析其基 ...

  2. 如何解读Linux Kernel OOPS信息

    OOPS信息解读 root@firefly:~/mnt/module# insmod oops_module.ko [ 867.140514] Unable to handle kernel NULL ...

  3. linux kernel make构建分析

    前言 之前对uboot的构建进行了分析,现在再对linux kernel的构建进行分析.几年前的确也分析过,但是只是停留在笔记层面,没有转为文章,这次下定决定来完善它. 环境 同样,采用的还是zynq ...

  4. Linux kernel workqueue机制分析【转】

    转自:http://www.linuxsir.org/linuxjcjs/15346.html 在内核编程中,workqueue机制是最常用的异步处理方式.本文主要基于linux kernel 3.1 ...

  5. Linux Kernel CMPXCHG函数分析

    原文地址:http://blog.csdn.net/penngrove/article/details/44175387 最近看到Linux Kernel cmpxchg的代码,对实现很不理解.上网查 ...

  6. linux kernel input 子系统分析

    Linux 内核为了处理各种不同类型的的输入设备 , 比如说鼠标 , 键盘 , 操纵杆 , 触摸屏 , 设计并实现了一个对上层应用统一的试图的抽象层 , 即是Linux 输入子系统 . 输入子系统的层 ...

  7. Linux Kernel ---- PCI Driver 分析

    自己笔记使用. Kernel 版本 4.15.0 (ubuntu 18.04,intel skylake) 最近想学习VGA驱动去了解 DDCCP / EDID 等协议,然后顺便了解下驱动是如何工作的 ...

  8. linux kernel 字符设备详解

    有关Linux kernel 字符设备分析: 参考:http://blog.jobbole.com/86531/ 一.linux kernel 将设备分为3大类,字符设备,块设备,网络设备. 字符设备 ...

  9. Understanding a Kernel Oops!

    Understanding a kernel panic and doing the forensics to trace the bug is considered a hacker's job. ...

随机推荐

  1. 11月1日上午PHP批量删除

    1.在主页面上添加批量删除有关代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" " ...

  2. 【ESRI论坛6周年征文】ArcEngine注记(Anno/ Label/Element等)处理专题 -入门篇

    原发表于ESRI中国社区,转过来.我的社区帐号:jhlong http://bbs.esrichina-bj.cn/ESRI/viewthread.php?tid=122097 ----------- ...

  3. centos6.7设置非root帐户自动登录

    1.在/etc/gdm/custom.conf文件中修改并加入以下这段 [daemon]AutomaticLogin=你的用户名AutomaticLoginEnable=True 2.重启 reboo ...

  4. PHP读写文件

    一:读取文件 例1: $xml = ""; //打开文件 $f = fopen('http://app.eyuebus.com/Public/apk/version.xml', ' ...

  5. Filter体现职责链模式

    1. 前言 Filter—Filter 技术是servlet2.3 新增加的功能.完成的流程:对用户请求进行预处理,接着将请求交给Servlet进行处理并生成响应,最后Filter再对服务器响应进行后 ...

  6. 深入理解javascript原型和闭包(8)——简述【执行上下文】上

    什么是“执行上下文”(也叫做“执行上下文环境”)?暂且不下定义,先看一段代码: 第一句报错,a未定义,很正常.第二句.第三句输出都是undefined,说明浏览器在执行console.log(a)时, ...

  7. 2014 Multi-University Training Contest 9#6

    2014 Multi-University Training Contest 9#6 Fast Matrix CalculationTime Limit: 2000/1000 MS (Java/Oth ...

  8. PHP mkdir 0777权限问题

    在linux系统中,即使我们使用root帐号去手工执行php命令: mkdir('test', 0777); 结果文件的权限依然为: drwxr-xr-x 2 root root 4096 Jun 1 ...

  9. Effective C++ 34 区分接口继承和实现继承

    public继承从根本上讲,有两部分:接口继承和实现继承.两者之前的区别很像函数声明与函数定义. 具体设计中,会呈现三种形式:derived class只继承成员函数的接口(纯虚函数):derived ...

  10. C#高级编程笔记 Day 7, 2016年9月 19日 (泛型)

    1.协变和抗变 泛型接口的协变 如果泛型类型用 out  关键字标注,泛型接口就是协变的.这也意味着返回类型只能是 T. 接口IIndex 与类型T 是协变的,并从一个制度索引器中返回这个类型. pu ...