HBase学习笔记-HBase性能研究(1)
转载请标注原链接:http://www.cnblogs.com/xczyd/p/5577124.html
客户在使用HBase的时候,经常会抱怨说写入太慢,并发上不去等等。从前我遇到这种情况,一般都二话不说,直接去看HBase集群的负载,看看有什么性能瓶颈等等。
某老司机说,且慢,先看看用户怎么写的客户端访问HBase集群的代码。
于是花了一些时间去看。
不看不知道,一看就吓尿。客户(也包括我们自己的实施)写出来的客户端,很多时候存在很多低级错误,比如:
(1)滥用sychronize;
(2)创建了连接不释放;
(3)明明只需要调用一次的API,却进行了多次调用,要是碰巧遇到比较花时间的API,那性能就可想而知了;
(4)其他各种幺蛾子...
为此,本篇仅从HBase的Java API入手,通过源码分析和简单的实验,找到最合适Java API调用方法(主要服务于高并发场景)。
如果对HBase的Java API不熟悉的话,可以先去官网看一下文档。
下面开始正文:
使用Java API与HBase集群交互时,需要先创建一个HTable的实例,再使用该实例提供的方法来进行插入/删除/查询等操作。
要创建HTable对象,要先创建一个包含了HBase集群信息的配置实例Configuration conf,其一般创建方法如下:
- Configuration conf = HBaseConfiguration.create();
- //设置HBase集群的IP和端口
- conf.set("hbase.zookeeper.quorum", "XX.XXX.X.XX");
- conf.set("hbase.zookeeper.property.clientPort", "2181");
在拥有了conf之后,可以通过HTable提供的如下两种构造方法来创建HTable实例:
方法一:直接利用conf来创建HTable实例
对应的构造函数如下:
- public HTable(Configuration conf, final TableName tableName)
- throws IOException {
- this.tableName = tableName;
- this.cleanupPoolOnClose = this.cleanupConnectionOnClose = true;
- if (conf == null) {
- this.connection = null;
- return;
- }
- this.connection = HConnectionManager.getConnection(conf);
- this.configuration = conf;
- this.pool = getDefaultExecutor(conf);
- this.finishSetup();
- }
注意红色部分的代码。在这种构造方法中,会调用HConnectionManager的getConnection函数,这个函数以conf作为输入参数,来获取了一个HConnection的实例connection。熟悉odbc,jdbc的话,会知道使用Java API进行数据库操作的时候,都会创建一个类似的connection/connection pool来维护一些数据库与客户端之间相互的连接。对于Hbase来说,承担类似角色的就是HConnection。不过与oracle不同的一点是,HConnection实际上去连接的并不是HBase集群本身,而是维护其关键数据信息的Zookeeper(简称ZK)集群。有关ZK的内容在这里不做展开,不熟悉的话可以单纯地理解为一个独立的元信息管理角色。回过来看getConnection函数,其具体实现如下:
- public static HConnection getConnection(final Configuration conf)
- throws IOException {
- HConnectionKey connectionKey = new HConnectionKey(conf);
- synchronized (CONNECTION_INSTANCES) {
- HConnectionImplementation connection = CONNECTION_INSTANCES.get(connectionKey);
- if (connection == null) {
- connection = (HConnectionImplementation)createConnection(conf, true);
- CONNECTION_INSTANCES.put(connectionKey, connection);
- } else if (connection.isClosed()) {
- HConnectionManager.deleteConnection(connectionKey, true);
- connection = (HConnectionImplementation)createConnection(conf, true);
- CONNECTION_INSTANCES.put(connectionKey, connection);
- }
- connection.incCount();
- return connection;
- }
- }
其中,CONNECTION_INSTANCES的类型是LinkedHashMap<HConnectionKey,HConnectionImplementation>。所谓HConnectionImplementation其实就是HConnection的具体实现。继续注意红色部分的三行代码。第一行,通过conf创建了一个HConnectionKey的实例connectionKey;第二行,去CONNECTION_INSTANCES中查找是否存在与connectionKey对应的一个HConnection的实例;第三行,如果不存在,那么调用createConnection来创建一个HConnection的实例,否则直接返回刚才从Map中查找得到的HConnection对象
不嫌麻烦,再看一下HConnectionKey的构造函数和重写的hashCode函数,代码分别如下:
- HConnectionKey(Configuration conf) {
- Map<String, String> m = new HashMap<String, String>();
- if (conf != null) {
- for (String property : CONNECTION_PROPERTIES) {
- String value = conf.get(property);
- if (value != null) {
- m.put(property, value);
- }
- }
- }
- this.properties = Collections.unmodifiableMap(m);
- try {
- UserProvider provider = UserProvider.instantiate(conf);
- User currentUser = provider.getCurrent();
- if (currentUser != null) {
- username = currentUser.getName();
- }
- } catch (IOException ioe) {
- HConnectionManager.LOG.warn("Error obtaining current user, skipping username in HConnectionKey", ioe);
- }
}
- public int hashCode() {
- final int prime = 31;
- int result = 1;
- if (username != null) {
- result = username.hashCode();
- }
- for (String property : CONNECTION_PROPERTIES) {
- String value = properties.get(property);
- if (value != null) {
- result = prime * result + value.hashCode();
- }
- }
- return result;
- }
可以看到,hashCode函数被重写以后,其返回值实际上是username的hashCode函数的返回值,而username来自于currentuser,currentuser又来自于provider,provider是由conf创建的。可以看出,只要有相同的conf,就能创建出相同的username,也就能保证HConnectionKey的hashCode函数被重写以后,能够在username相同时返回相同的值。而CONNECTION_INSTANCES是一个LinkedHashMap,其get函数会调用HConnectionKey的hashCode函数来判断该对象是否已经存在。因此,getConnection函数的本质就是根据conf信息返回connection对象,对每一个内容相同的conf,只会返回一个connection
方法二:调用createConnection方法来显式地创建Hconnection的实例,再将其作为输入参数来创建HTable实例
createConnection方法和Htable对应的构造函数分别如下:
- public static HConnection createConnection(Configuration conf) throws IOException {
- UserProvider provider = UserProvider.instantiate(conf);
- return createConnection(conf, false, null, provider.getCurrent());
- }
- static HConnection createConnection(final Configuration conf, final boolean managed,final ExecutorService pool, final User user)
throws IOException {- String className = conf.get("hbase.client.connection.impl",HConnectionManager.HConnectionImplementation.class.getName());
- Class<?> clazz = null;
- try {
- clazz = Class.forName(className);
- } catch (ClassNotFoundException e) {
- throw new IOException(e);
- }
- try {
- // Default HCM#HCI is not accessible; make it so before invoking.
- Constructor<?> constructor =
- clazz.getDeclaredConstructor(Configuration.class,
- boolean.class, ExecutorService.class, User.class);
- constructor.setAccessible(true);
- return (HConnection) constructor.newInstance(conf, managed, pool, user);
- } catch (Exception e) {
- throw new IOException(e);
- }
- }
- public HTable(TableName tableName, HConnection connection) throws IOException {
- this.tableName = tableName;
- this.cleanupPoolOnClose = true;
- this.cleanupConnectionOnClose = false;
- this.connection = connection;
- this.configuration = connection.getConfiguration();
- this.pool = getDefaultExecutor(this.configuration);
- this.finishSetup();
- }
可以看出,这种构造HTable的方法会通过反射来创建一个新的HConnection实例,而不像方法一中那样共享一个HConnection实例。
值得一提的是,通过此种方法创建出来的HConnection,是需要在不再使用的时候显式调用close方法去释放掉的,否则容易造成端口占用等问题。
那么,上述两种方法,在执行插入/删除/查找的时候,性能如何呢?不妨先从代码角度分析一下。为了简便,先分析HTable在执行put(插入)操作时具体做的事情。
HTable的put函数如下:
- public void put(final Put put) throws InterruptedIOException, RetriesExhaustedWithDetailsException {
- doPut(put);
- if (autoFlush) {
- flushCommits();
- }
- }
- private void doPut(Put put) throws InterruptedIOException, RetriesExhaustedWithDetailsException {
- if (ap.hasError()){
- writeAsyncBuffer.add(put);
- backgroundFlushCommits(true);
- }
- validatePut(put);
- currentWriteBufferSize += put.heapSize();
- writeAsyncBuffer.add(put);
- while (currentWriteBufferSize > writeBufferSize) {
- backgroundFlushCommits(false);
- }
- }
- private void backgroundFlushCommits(boolean synchronous) throws InterruptedIOException, RetriesExhaustedWithDetailsException {
- try {
- do {
- ap.submit(writeAsyncBuffer, true);
- } while (synchronous && !writeAsyncBuffer.isEmpty());
- if (synchronous) {
- ap.waitUntilDone();
- }
- if (ap.hasError()) {
- LOG.debug(tableName + ": One or more of the operations have failed -" +
- " waiting for all operation in progress to finish (successfully or not)");
- while (!writeAsyncBuffer.isEmpty()) {
- ap.submit(writeAsyncBuffer, true);
- }
- ap.waitUntilDone();
- if (!clearBufferOnFail) {
- // if clearBufferOnFailed is not set, we're supposed to keep the failed operation in the
- // write buffer. This is a questionable feature kept here for backward compatibility
- writeAsyncBuffer.addAll(ap.getFailedOperations());
- }
- RetriesExhaustedWithDetailsException e = ap.getErrors();
- ap.clearErrors();
- throw e;
- }
- } finally {
- currentWriteBufferSize = 0;
- for (Row mut : writeAsyncBuffer) {
- if (mut instanceof Mutation) {
- currentWriteBufferSize += ((Mutation) mut).heapSize();
- }
- }
- }
- }
如红色部分所表示,调用顺序是put->doPut->backgroundFlushCommits->ap.submit,其中ap是类AsyncProcess的对象。因此追踪到AsyncProcess类,其代码如下:
- public void submit(List<? extends Row> rows, boolean atLeastOne) throws InterruptedIOException {
- submitLowPriority(rows, atLeastOne, false);
- }
- public void submitLowPriority(List<? extends Row> rows, boolean atLeastOne, boolean isLowPripority) throws InterruptedIOException {
- if (rows.isEmpty()) {
- return;
- }
- // This looks like we are keying by region but HRegionLocation has a comparator that compares
- // on the server portion only (hostname + port) so this Map collects regions by server.
- Map<HRegionLocation, MultiAction<Row>> actionsByServer = new HashMap<HRegionLocation, MultiAction<Row>>();
- List<Action<Row>> retainedActions = new ArrayList<Action<Row>>(rows.size());
- long currentTaskCnt = tasksDone.get();
- boolean alreadyLooped = false;
- NonceGenerator ng = this.hConnection.getNonceGenerator();
- do {
- if (alreadyLooped){
- // if, for whatever reason, we looped, we want to be sure that something has changed.
- waitForNextTaskDone(currentTaskCnt);
- currentTaskCnt = tasksDone.get();
- } else {
- alreadyLooped = true;
- }
- // Wait until there is at least one slot for a new task.
- waitForMaximumCurrentTasks(maxTotalConcurrentTasks - 1);
- // Remember the previous decisions about regions or region servers we put in the
- // final multi.
- Map<Long, Boolean> regionIncluded = new HashMap<Long, Boolean>();
- Map<ServerName, Boolean> serverIncluded = new HashMap<ServerName, Boolean>();
- int posInList = -1;
- Iterator<? extends Row> it = rows.iterator();
- while (it.hasNext()) {
- Row r = it.next();
- HRegionLocation loc = findDestLocation(r, posInList);
- if (loc == null) { // loc is null if there is an error such as meta not available.
- it.remove();
- } else if (canTakeOperation(loc, regionIncluded, serverIncluded)) {
- Action<Row> action = new Action<Row>(r, ++posInList);
- setNonce(ng, r, action);
- retainedActions.add(action);
- addAction(loc, action, actionsByServer, ng);
- it.remove();
- }
- }
- } while (retainedActions.isEmpty() && atLeastOne && !hasError());
- HConnectionManager.ServerErrorTracker errorsByServer = createServerErrorTracker();
- sendMultiAction(retainedActions, actionsByServer, 1, errorsByServer, isLowPripority);
- }
- private HRegionLocation findDestLocation(Row row, int posInList) {
- if (row == null) throw new IllegalArgumentException("#" + id + ", row cannot be null");
- HRegionLocation loc = null;
- IOException locationException = null;
- try {
- loc = hConnection.locateRegion(this.tableName, row.getRow());
- if (loc == null) {
- locationException = new IOException("#" + id + ", no location found, aborting submit for" +
- " tableName=" + tableName +
- " rowkey=" + Arrays.toString(row.getRow()));
- }
- } catch (IOException e) {
- locationException = e;
- }
- if (locationException != null) {
- // There are multiple retries in locateRegion already. No need to add new.
- // We can't continue with this row, hence it's the last retry.
- manageError(posInList, row, false, locationException, null);
- return null;
- }
- return loc;
- }
这里代码的主要实现机制是异步调用,也就是说,并非每一次put操作都是直接往HBase里面写数据的,而是等到缓存区域内的数据多到一定程度(默认设置是2M),再进行一次写操作。当然这次操作在Server端应当还是要排队执行的,具体执行机制这里不作展开。可以确定的是,HConnection在插入/查询/删除的Java API中,只是起到一个定位RegionServer的作用,在定位到RegionServer之后,操作都是由client端通过rpc调用完成的,与客户端创建的connection的数目无关。另外,locateRegion其实只有在没有命中缓存的时候才会进行rpc通信,其他时候都是直接从缓存中获取RegionServer信息,详情可以查看locateRegion的源码,这里也不再展开。
代码分析告一段落,通过分析可以确定,createConnection的方法创建出大量的HConnection并不会对写入性能有任何帮助。相反,由于白白浪费了资源,还会比getConnection更慢。但是慢多少,无法仅凭代码作出判断。
不妨简单做一个实验来验证上述论断:
服务器环境:四台linux服务器组成的HBase集群, 内存64G,ping一次平均约5ms(严谨一点的话应该再提供一下cpu核数、频率,以及磁盘转速等信息)
客户端环境:在Mac上装的ubuntu虚拟机,分配内存10G,CPU、网络和磁盘读写速度都要比物理机慢不少,但是不影响结论
实验代码如下:
- public class HbaseConectionTest {
- public static void main(String[] args) throws Exception{
- Configuration conf = HBaseConfiguration.create();
- conf.set("hbase.zookeeper.quorum", "XX.XXX.X.XX");
- conf.set("hbase.zookeeper.property.clientPort", "2181");
- ThreadInfo info = new ThreadInfo();
- info.setTableNamePrefix("test");
- info.setColNames("col1,col2");
- info.setTableCount(1);
- info.setConnStrategy("CREATEWITHCONF");//CREATEWITHCONF,CREATEWITHCONN
- info.setWriteStrategy("SEPERATE");//OVERLAP,SEPERATE
- info.setLifeCycle(60000L);
- int threadCount = 100;
- for(int i=0;i<threadCount;i++){
- //createTable(tableNamePrefix+i,colNames,conf);
- }
- //
- for(int i=0;i<threadCount;i++){
- new Thread(new WriteThread(conf,info,i)).start();
- }
- //HBaseAdmin admin = new HBaseAdmin(conf);
- //System.out.println(admin.tableExists("test"));
- }
- public static void createTable(String tableName,String[] colNames,Configuration conf) {
- System.out.println("start create table "+tableName);
- try {
- HBaseAdmin hBaseAdmin = new HBaseAdmin(conf);
- if (hBaseAdmin.tableExists(tableName)) {
- System.out.println(tableName + " is exist");
- //hBaseAdmin.disableTable(tableName);
- //hBaseAdmin.deleteTable(tableName);
- return;
- }
- HTableDescriptor tableDescriptor = new HTableDescriptor(tableName);
- for(int i=0;i<colNames.length;i++) {
- tableDescriptor.addFamily(new HColumnDescriptor(colNames[i]));
- }
- hBaseAdmin.createTable(tableDescriptor);
- } catch (Exception ex) {
- ex.printStackTrace();
- }
- System.out.println("end create table "+tableName);
- }
- }
- //Thread执行操作的配置信息
- class ThreadInfo {
- private int tableCount;
- String tableNamePrefix;
- String[] colNames;
- //CREATEBYCONF or CREATEBYCONN
- String connStrategy;
- //overlap or seperate
- String writeStrategy;
- long lifeCycle;
- public ThreadInfo(){
- }
- public int getTableCount() {
- return tableCount;
- }
- public void setTableCount(int tableCount) {
- this.tableCount = tableCount;
- }
- public String getTableNamePrefix() {
- return tableNamePrefix;
- }
- public void setTableNamePrefix(String tableNamePrefix) {
- this.tableNamePrefix = tableNamePrefix;
- }
- public String[] getColNames() {
- return colNames;
- }
- public void setColNames(String[] colNames) {
- this.colNames = colNames;
- }
- public void setColNames(String colNames) {
- if(colNames == null){
- this.colNames = null;
- }
- else{
- this.colNames = colNames.split(",");
- }
- }
- public String getWriteStrategy() {
- return writeStrategy;
- }
- public void setWriteStrategy(String writeStrategy) {
- this.writeStrategy = writeStrategy;
- }
- public String getConnStrategy() {
- return connStrategy;
- }
- public void setConnStrategy(String connStrategy) {
- this.connStrategy = connStrategy;
- }
- public long getLifeCycle() {
- return lifeCycle;
- }
- public void setLifeCycle(long lifeCycle) {
- this.lifeCycle = lifeCycle;
- }
- }
- class WriteThread implements Runnable{
- private Configuration conf;
- private ThreadInfo info;
- private int index;
- public WriteThread(Configuration conf,ThreadInfo info,int index){
- this.conf = conf;
- this.info = info;
- this.index = index;
- }
- @Override
- public void run(){
- String threadName = Thread.currentThread().getName();
- int operationCount = 0;
- HTable[] htables = null;
- HConnection conn = null;
- int tableCount = info.getTableCount();
- String tableNamePrefix = info.getTableNamePrefix();
- String[] colNames = info.getColNames();
- String connStrategy = info.getConnStrategy();
- String writeStrategy = info.getWriteStrategy();
- long lifeCycle = info.getLifeCycle();
- System.out.println(threadName+": started with index "+index);
- try{
- if (connStrategy.equals("CREATEWITHCONN")) {
- conn = HConnectionManager.createConnection(conf);
- if (writeStrategy.equals("SEPERATE")) {
- htables = new HTable[1];
- htables[0] = new HTable(TableName.valueOf(tableNamePrefix+(index%tableCount)), conn);
- }
- else if(writeStrategy.equals("OVERLAP")) {
- htables = new HTable[tableCount];
- for (int i = 0; i < tableCount; i++) {
- htables[i] = new HTable(TableName.valueOf(tableNamePrefix+i), conn);
- }
- }
- else{
- return;
- }
- }
- else if (connStrategy.equals("CREATEWITHCONF")) {
- conn = null;
- if (writeStrategy.equals("SEPERATE")) {
- htables = new HTable[1];
- htables[0] = new HTable(conf,TableName.valueOf(tableNamePrefix+(index%tableCount)));
- }
- else if(writeStrategy.equals("OVERLAP")) {
- htables = new HTable[tableCount];
- for (int i = 0; i < tableCount; i++) {
- htables[i] = new HTable(conf,TableName.valueOf(tableNamePrefix+i));
- }
- }
- else{
- return;
- }
- }
- else {
- return;
- }
- long start = System.currentTimeMillis();
- long end = System.currentTimeMillis();
- Map<HTable,HColumnDescriptor[]> table_columnFamilies = new HashMap<HTable,HColumnDescriptor[]>();
- for(int i=0;i<htables.length;i++){
- table_columnFamilies.put(htables[i],htables[i].getTableDescriptor().getColumnFamilies());
- }
- while(end-start<=lifeCycle){
- HTable table = htables.length==1?htables[0]:htables[(int)Math.random()*htables.length];
- long s1 = System.currentTimeMillis();
- double r = Math.random();
- HColumnDescriptor[] columnFamilies = table_columnFamilies.get(table);
- Put put = generatePut(threadName,columnFamilies,colNames,operationCount);
- table.put(put);
- if(r>0.999){
- System.out.println(System.currentTimeMillis()-s1);
- }
- operationCount++;
- end = System.currentTimeMillis();
- }
- if(conn != null){
- conn.close();
- }
- }catch(Exception ex){
- ex.printStackTrace();
- }
- System.out.println(threadName+": ended with operation count:"+operationCount);
- }
- private Put generatePut(String threadName,HColumnDescriptor[] columnFamilies,String[] colNames,int operationCount){
- Put put = new Put(Bytes.toBytes(threadName+"_"+operationCount));
- for (int i = 0; i < columnFamilies.length; i++) {
- String familyName = columnFamilies[i].getNameAsString();
- //System.out.println("familyName:"+familyName);
- for(int j=0;j<colNames.length;j++){
- if(familyName.equals(colNames[j])) { //
- String columnName = familyName+(int)(Math.floor(Math.random()*5+10*j));
- String val = ""+columnName.hashCode()%100;
- put.add(Bytes.toBytes(familyName),Bytes.toBytes(columnName),Bytes.toBytes(val));
- }
- }
- }
- //System.out.println(put.toString());
- return put;
- }
- }
简单来说就是先创建一些有两列的HBase表,然后创建一些线程分别采用getConnection策略和createConnection策略来写1分钟的数据。当然写几张表,写多久,写什么,怎么写都可以调整。比如我这里就设计了固定写一张表或者随机写一张表几种逻辑。需要注意一下红色部分的代码,这里预先获得了要写的HBase表的列信息。做这个动作的原因是getTableDescriptor是会产生网络开销的,建议写代码时尽量少调用,以免增加不必要的额外开销(事实上这个额外开销是很巨大的)。
具体实验数据如下表所示,具体值因为网络波动等原因会有所差异。总的来说,在并发较高(线程数大于30)的时候,getConnection方法速度要明显快于createConnection;在并发较低的(线程数小于等于10)的时候,createConnection则稍微占优。另外,使用getConnection的时候,写一张表的速度在高并发场景下要明显快于写多张表,但是在低并发情况下此现象不明显;使用createConnection的时候,无论并发高低,写一张表的速度与写多张表大致相同,甚至还偏慢。
上述现象与代码分析的结果并不完全一致。不一致的地方主要包括如下两点:
(1)为什么线程少的时候,createConnection占优?理论上应该持平才是。这一点无法得到很合理的解释,存疑;
(2)为什么线程很多的时候,createConnection会慢这么多?这里猜测服务端的ZK要维护大量连接会负载过大,即便是多个regionServer在负责具体的写操作,也仍旧会导致性能下降。
这两个疑点还有待进一步论证。尽管如此,还是可以先建议大家在使用Java API与HBase交互时,尤其是处理高并发场景的时候,尽量使用getConnection的办法去创建HTable对象,避免维护不必要的connection导致浪费资源。
thread_count | table_count | conn_strategy | write_strategy | interval | result |
1 | 1 | CONF | OVERLAP | 60s | 10000*1=10000 |
5 | 1 | CONF | OVERLAP | 60s | 11000*5=55000 |
10 | 1 | CONF | OVERLAP | 60s | 12000*10=120000 |
30 | 1 | CONF | OVERLAP | 60s | 8300*30=249000 |
60 | 1 | CONF | OVERLAP | 60s | 6000*60=360000 |
100 | 1 | CONF | OVERLAP | 60s | 4700*100=470000 |
1 | 1 | CONN | OVERLAP | 60s | 12000*1=12000 |
5 | 1 | CONN | OVERLAP | 60s | 16000*5=80000 |
10 | 1 | CONN | OVERLAP | 60s | 10000*10=100000 |
30 | 1 | CONN | OVERLAP | 60s | 2500*30=75000 |
60 | 1 | CONN | OVERLAP | 60s | 1200*60=72000 |
100 | 1 | CONN | OVERLAP | 60s | 1000*100=100000 |
5 | 5 | CONF | SEPERATE | 60s | 10600*5=53000 |
10 | 10 | CONF | SEPERATE | 60s | 11900*10=119000 |
30 | 30 | CONF | SEPERATE | 60s | 6900*30=207000 |
60 | 60 | CONF | SEPERATE | 60s | 3650*60=219000 |
100 | 100 | CONF | SEPERATE | 60s | 2500*100=250000 |
5 | 5 | CONN | SEPERATE | 60s | 14000*5=70000 |
10 | 10 | CONN | SEPERATE | 60s | 10500*10=105000 |
30 | 30 | CONN | SEPERATE | 60s | 3250*30=97500 |
60 | 60 | CONN | SEPERATE | 60s | 1450*60=87000 |
100 | 100 | CONN | SEPERATE | 60s | 930*100=93000 |
HBase学习笔记-HBase性能研究(1)的更多相关文章
- HBASE学习笔记(四)
这两天把要前几天的知识点回顾一下,接下来我会用自己对知识点的理解来写一些东西 一.知识点回顾 1.hbase集群启动:$>start-hbase.sh ===>hbase-daemon.s ...
- HBase学习笔记之HBase的安装和配置
HBase学习笔记之HBase的安装和配置 我是为了调研和验证hbase的bulkload功能,才安装hbase,学习hbase的.为了快速的验证bulkload功能,我安装了一个节点的hadoop集 ...
- loadrunner 场景设计-学习笔记之性能误区
场景设计-学习笔记之性能误区 by:授客 QQ:1033553122 场景假设: 每个事务仅包含一次请求,执行10000个并发用户数 性能误区: 每秒并发用户数=每秒向服务器提交请求数 详细解答: 每 ...
- HBase学习笔记-高级(一)
HBase1. hbase.id记录了集群的唯一标识:hbase.version记录了文件格式的版本号2. split和.corrupt目录在日志分裂过程中使用,以便保存一些中间结果和损坏的日志在表目 ...
- Hbase—学习笔记(一)
此文的目的: 1.重点理解Hbase的整体工作机制 2.熟悉编程api,能够用来写程序 1. 什么是HBASE 1.1. 概念特性 HBASE是一个数据库----可以提供数据的实时随机读写 HB ...
- hbase 学习笔记一---基本概念
说在前面,本文部分内容来源于社区官网经过适度翻译,部分根据经验总结,部分是抄袭网络博文,(不一一列举引用,在此致歉)一并列在一起,本文的目的,希望能总结出一些有用的,应该注意到的东西,基本 ...
- Hbase 学习笔记2----概念
说在前面,本文部分内容来源于社区官网经过适度翻译,部分根据经验总结,部分是抄袭网络博文,(不一一列举引用,在此致歉)一并列在一起,本文的目的,希望能总结出一些有用的,应该注意到的东西,基本思路是先提出 ...
- HBase学习笔记一
HBase简介 HBase概念 HBase的原型是谷歌的Bigtable论文 HBase是一个高可靠性.高性能.面向列.可伸缩的分布式存储系统,利用HBase技术可在廉价PC上搭建起大规模结构化存储集 ...
- HBase学习笔记之BulkLoad
HBase学习之BulkLoad bulkload的学习以后再写文章. 参考资料: 1.https://blog.csdn.net/shixiaoguo90/article/details/78038 ...
随机推荐
- 安装Linux Mint
1.尽量选择trusty的安装版本,kde和xfce不支持Win+..快捷键,推荐cinnamon:制作安装U盘后,选择非EFI模式启动:选择start Linux Mint(就是第一项): 2.In ...
- gbk与utf-8转换
linux: #include <iconv.h> int code_convert(char *from_charset,char *to_charset,char *inbuf,int ...
- python网络编程【一】
TCP/IP 是标准的协议,它可以使用世界范围内的计算机通过Internet或本地的网络通信 1.编写一个TCP客户端程序 #!/usr/bin/env python import socket, s ...
- Spring 通过配置文件注入 properties文件
当我们需要将某些值放入 properties文件 key=value 的方式,获取文件信息使用spring 注入的方式会变得很便捷 1. spring 配置文件需要导入 <?xml versio ...
- MicroERP软件更新记录1.1
MicroERP软件更新记录 最新版本:1.1 1.增加固定资产检修.租赁.转移记录 2.增加产品质检单 3.增加零售单(收银台) 4.支持各种主流关系型数据库 5.完善了数据字典,如加入原材料材质. ...
- java常用注释
@see 加入超链接 @see 类名 @see 完整类名 @see 完整类名#方法名 @version 版本信息 @author 作者信息 @param 参数名 说明 @return 说明 @exce ...
- unity代码加密for Android,mono编译
uinty3d加密推荐几篇比较好的博客链接: http://www.cppcourse.com/u3d-encryption.html http://www.xuanyusong.com/archiv ...
- JAVA多线程超时加载当网页图片
先上图: 这一次没有采取正则匹配,而采取了最简单的java分割和替代方法进行筛选图片 它能够筛选如下的图片并保存到指定的文件夹 如: “http://xxxx/xxxx/xxx.jpg” 'http: ...
- ubuntu 安装MTK 移动终端usb驱动
lsusbBus 001 Device 002: ID 8087:8000 Intel Corp. Bus 001 Device 001: ID 1d6b:0002 Linux Foundation ...
- Objective-C学习笔记-第四天(1)
解决以下昨天遇到的问题 1.@class与import是怎么样的呢?参考:http://www.cnblogs.com/ios8/p/ios-oc-test.html 在头文件中, 一般只需要知道被引 ...