PAT题库-1064. Complete Binary Search Tree (30)
1064. Complete Binary Search Tree (30)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4 这道题考察的点是二叉搜索树和完全二叉树。刚开始我第一反应就是完全二叉树的性质:用数组存储的话,父节点下标为i,左孩子为2i,右孩子为2i+1。而一个完全二叉搜索树的最小节点肯定在最左边。我一开始的想法是用数组存储,找到最左边那个位置,放进去0,然后找到0的父节点,放1,再放右节点的2,再往上一直放,但是当时没想到用递归,觉得这样写会很麻烦,所以放弃了。
接着我用了最普通的链式方法建树,然后层序遍历输出。不得不说,链式方法建树很繁琐,我调试了很久才通过。具体思路是,先把输入数据放在一个vector里面,然后排序,从小到大排。然后找出整个树的根节点的下标(找的方法是先计算左子树有几个节点),再递归,在左子树再建树。这样非常麻烦,写递归的时候很容易出错。
后来AC之后在网上搜了搜,发现有非常好的做法。其实我一开始的想法类似,但是没有更进一步去想。一个完全二叉搜索树的中序遍历的结果就是递增排列的,那么我们采用中序遍历的方法去建树(即遍历的时候,visit操作是给节点赋值!)。这种逆向思维是我之前完全没想到的,这次学习了。总之就是,采用中序遍历的方法,利用完全二叉树的父子节点关系去建树,最后把数组按序输出即可。
下面我把两种方法的代码都贴上来。很明显,第一段代码明显比第二段简单得多得多得多得多!!!
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std; int N;
int pos=;
int *tree;
vector<int> vec; void build(int n)
{
if (n>N) return;
else
{
build(n*);
tree[n] = vec[pos++];
build(n*+);
}
} int main()
{
int element;
cin >> N;
tree = new int [N+];
//输入元素并排序
for (int i=;i<N;i++)
{
cin >> element;
vec.push_back(element);
}
sort(vec.begin(),vec.end()); build();
cout << tree[];
for (int i=;i<=N;i++)
cout << ' ' << tree[i];
return ;
}
#include<iostream>
#include<vector>
#include<cmath>
#include<queue>
#include<algorithm>
using namespace std; typedef struct node* tree;
struct node
{
int data;
tree left;
tree right;
}; tree BuildTree (tree,int,unsigned,unsigned);
int FindRoot(int,int);
void LevelOrderTraversal(tree T);
vector<int> vec; int main()
{
int N,element;
cin >> N; //输入元素并排序
for (int i=;i<N;i++)
{
cin >> element;
vec.push_back(element);
}
sort(vec.begin(),vec.end()); unsigned b=,e=vec.size()-; int root=FindRoot(N,);
tree T = nullptr;
T=BuildTree(T,root,b,e); LevelOrderTraversal(T); return ;
} int FindRoot(int N,int base)
{
int level=int(log(double(N))/log(2.0))+; //共有这么多层
int root=;
if (N == )
root = ;
else if (N == )
root = ;
else if (N==)
root = ;
else
if (N-(pow(double(),double(level-))-) > pow(double(),double(level-)) )//左子树满了
root = pow(double(),double(level-))-;
else
root = pow(double(),double(level-))-+N-(pow(double(),double(level-))-);
return root+base;
} tree BuildTree(tree T,int root,unsigned b,unsigned e)
{
//cout << b << e << endl;
if (e==b)
{
T=new node;
T->data = vec[b];
T->left = nullptr;
T->right = nullptr;
}
else
{
T = new node;
T->data = vec[root];
T->left = BuildTree(T,FindRoot(root-b,b),b,root-);
if (e!=root)
T->right= BuildTree(T,FindRoot(e-root,root+),root+,e);
else
T->right = nullptr;
}
return T;
} void LevelOrderTraversal(tree T)
{
bool flag=true;
queue<tree> Q;
if (!T) return;
Q.push(T);
while (!Q.empty())
{
if (flag)
{
cout << Q.front()->data;
flag = false;
}
else
cout << ' ' << Q.front()->data;
if (Q.front()->left)
Q.push(Q.front()->left);
if (Q.front()->right)
Q.push(Q.front()->right);
Q.pop();
}
}
PAT题库-1064. Complete Binary Search Tree (30)的更多相关文章
- PAT甲级:1064 Complete Binary Search Tree (30分)
PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...
- PAT甲题题解-1064. Complete Binary Search Tree (30)-中序和层次遍历,水
由于是满二叉树,用数组既可以表示父节点是i,则左孩子是2*i,右孩子是2*i+1另外根据二分搜索树的性质,中序遍历恰好是从小到大排序因此先中序遍历填充节点对应的值,然后再层次遍历输出即可. 又是一道遍 ...
- 【PAT甲级】1064 Complete Binary Search Tree (30 分)
题意:输入一个正整数N(<=1000),接着输入N个非负整数(<=2000),输出完全二叉树的层次遍历. AAAAAccepted code: #define HAVE_STRUCT_TI ...
- PAT (Advanced Level) 1064. Complete Binary Search Tree (30)
因为是要构造完全二叉树,所以树的形状已经确定了. 因此只要递归确定每个节点是多少即可. #include<cstdio> #include<cstring> #include& ...
- pat 甲级 1064. Complete Binary Search Tree (30)
1064. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...
- 1064. Complete Binary Search Tree (30)【二叉树】——PAT (Advanced Level) Practise
题目信息 1064. Complete Binary Search Tree (30) 时间限制100 ms 内存限制65536 kB 代码长度限制16000 B A Binary Search Tr ...
- PAT 甲级 1064 Complete Binary Search Tree (30 分)(不会做,重点复习,模拟中序遍历)
1064 Complete Binary Search Tree (30 分) A Binary Search Tree (BST) is recursively defined as a bin ...
- PAT Advanced 1064 Complete Binary Search Tree (30) [⼆叉查找树BST]
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- 1064 Complete Binary Search Tree (30分)(已知中序输出层序遍历)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...
随机推荐
- dos命名重启或关闭远程服务器
1.建议远程连接.(把远程机器IP换成实际IP地址,把密码改为administrator的真实密码) net use \\远程机器IP\ipc$ "密码"/user:adminis ...
- OpenBSD内核之引导PBR
OpenBSD引导的第二部PBR,也是活动分区的一个扇区的代码,由第一步的MBR加载到0x7C00处,manpage里详细的讲解了过程和大致实现 biosboot(8) (http://man.ope ...
- Oracle中DBLink的使用
DBLink 的作用是在局域网内,通过一台服务器上面的数据库访问另外一台服务器上面数据库的功能. 下面简单的介绍DBLink的配置: 服务器A:IP 10.10.10.107, 数据库实例名:orcl ...
- UI UIBUTTON
@import url(http://i.cnblogs.com/Load.ashx?type=style&file=SyntaxHighlighter.css);@import url(/c ...
- linux php redis 扩展安装
安装redis服务端 1 进入软件的下载路径 cd /soft wget http://download.redis.io/redis-stable.tar.gz tar -zxvf redis-st ...
- mongodb 使用场景和不使用场景
1.mongodb介绍 MongoDB (名称来自"humongous") 是一个可扩展的高性能,开源,模式自由,面向文档的数据库.它使用C++编写.MongoDB特点: a.面向 ...
- 浅谈学习掌握linux系统的优势
Linux系统让我们懂得了共享.开放.自由可以让人类生活的更加美好,开源精神是一种让每个从事Linux行业的技术人员从骨子里自豪的情怀,开源产品的兴盛受益于开源社区的强壮根基.Linux真的给了我很多 ...
- <java基础学习>RE 基础语法
public class MyFirstJavaProgram{ public static void main(String[] args ){ System.out.println("H ...
- ES6中块作用域之于for语句是怎样的?
在ES6中新加了快作用域的概念(C语言就有,作为类c语言的js,当然应该加上),算是很好理解. { let i; } console.log(i);// i is not defined 在代码块当中 ...
- 搬运:Python for Windows——监控Windows某个目录下文件的变化
https://win32com.goermezer.de/content/view/286/285/ 这个网站真是给力,不多说,代码直接搬运过来,还有我的测试结果,拿走不谢! import os i ...