PAT题库-1064. Complete Binary Search Tree (30)
1064. Complete Binary Search Tree (30)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4 这道题考察的点是二叉搜索树和完全二叉树。刚开始我第一反应就是完全二叉树的性质:用数组存储的话,父节点下标为i,左孩子为2i,右孩子为2i+1。而一个完全二叉搜索树的最小节点肯定在最左边。我一开始的想法是用数组存储,找到最左边那个位置,放进去0,然后找到0的父节点,放1,再放右节点的2,再往上一直放,但是当时没想到用递归,觉得这样写会很麻烦,所以放弃了。
接着我用了最普通的链式方法建树,然后层序遍历输出。不得不说,链式方法建树很繁琐,我调试了很久才通过。具体思路是,先把输入数据放在一个vector里面,然后排序,从小到大排。然后找出整个树的根节点的下标(找的方法是先计算左子树有几个节点),再递归,在左子树再建树。这样非常麻烦,写递归的时候很容易出错。
后来AC之后在网上搜了搜,发现有非常好的做法。其实我一开始的想法类似,但是没有更进一步去想。一个完全二叉搜索树的中序遍历的结果就是递增排列的,那么我们采用中序遍历的方法去建树(即遍历的时候,visit操作是给节点赋值!)。这种逆向思维是我之前完全没想到的,这次学习了。总之就是,采用中序遍历的方法,利用完全二叉树的父子节点关系去建树,最后把数组按序输出即可。
下面我把两种方法的代码都贴上来。很明显,第一段代码明显比第二段简单得多得多得多得多!!!
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std; int N;
int pos=;
int *tree;
vector<int> vec; void build(int n)
{
if (n>N) return;
else
{
build(n*);
tree[n] = vec[pos++];
build(n*+);
}
} int main()
{
int element;
cin >> N;
tree = new int [N+];
//输入元素并排序
for (int i=;i<N;i++)
{
cin >> element;
vec.push_back(element);
}
sort(vec.begin(),vec.end()); build();
cout << tree[];
for (int i=;i<=N;i++)
cout << ' ' << tree[i];
return ;
}
#include<iostream>
#include<vector>
#include<cmath>
#include<queue>
#include<algorithm>
using namespace std; typedef struct node* tree;
struct node
{
int data;
tree left;
tree right;
}; tree BuildTree (tree,int,unsigned,unsigned);
int FindRoot(int,int);
void LevelOrderTraversal(tree T);
vector<int> vec; int main()
{
int N,element;
cin >> N; //输入元素并排序
for (int i=;i<N;i++)
{
cin >> element;
vec.push_back(element);
}
sort(vec.begin(),vec.end()); unsigned b=,e=vec.size()-; int root=FindRoot(N,);
tree T = nullptr;
T=BuildTree(T,root,b,e); LevelOrderTraversal(T); return ;
} int FindRoot(int N,int base)
{
int level=int(log(double(N))/log(2.0))+; //共有这么多层
int root=;
if (N == )
root = ;
else if (N == )
root = ;
else if (N==)
root = ;
else
if (N-(pow(double(),double(level-))-) > pow(double(),double(level-)) )//左子树满了
root = pow(double(),double(level-))-;
else
root = pow(double(),double(level-))-+N-(pow(double(),double(level-))-);
return root+base;
} tree BuildTree(tree T,int root,unsigned b,unsigned e)
{
//cout << b << e << endl;
if (e==b)
{
T=new node;
T->data = vec[b];
T->left = nullptr;
T->right = nullptr;
}
else
{
T = new node;
T->data = vec[root];
T->left = BuildTree(T,FindRoot(root-b,b),b,root-);
if (e!=root)
T->right= BuildTree(T,FindRoot(e-root,root+),root+,e);
else
T->right = nullptr;
}
return T;
} void LevelOrderTraversal(tree T)
{
bool flag=true;
queue<tree> Q;
if (!T) return;
Q.push(T);
while (!Q.empty())
{
if (flag)
{
cout << Q.front()->data;
flag = false;
}
else
cout << ' ' << Q.front()->data;
if (Q.front()->left)
Q.push(Q.front()->left);
if (Q.front()->right)
Q.push(Q.front()->right);
Q.pop();
}
}
PAT题库-1064. Complete Binary Search Tree (30)的更多相关文章
- PAT甲级:1064 Complete Binary Search Tree (30分)
PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...
- PAT甲题题解-1064. Complete Binary Search Tree (30)-中序和层次遍历,水
由于是满二叉树,用数组既可以表示父节点是i,则左孩子是2*i,右孩子是2*i+1另外根据二分搜索树的性质,中序遍历恰好是从小到大排序因此先中序遍历填充节点对应的值,然后再层次遍历输出即可. 又是一道遍 ...
- 【PAT甲级】1064 Complete Binary Search Tree (30 分)
题意:输入一个正整数N(<=1000),接着输入N个非负整数(<=2000),输出完全二叉树的层次遍历. AAAAAccepted code: #define HAVE_STRUCT_TI ...
- PAT (Advanced Level) 1064. Complete Binary Search Tree (30)
因为是要构造完全二叉树,所以树的形状已经确定了. 因此只要递归确定每个节点是多少即可. #include<cstdio> #include<cstring> #include& ...
- pat 甲级 1064. Complete Binary Search Tree (30)
1064. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...
- 1064. Complete Binary Search Tree (30)【二叉树】——PAT (Advanced Level) Practise
题目信息 1064. Complete Binary Search Tree (30) 时间限制100 ms 内存限制65536 kB 代码长度限制16000 B A Binary Search Tr ...
- PAT 甲级 1064 Complete Binary Search Tree (30 分)(不会做,重点复习,模拟中序遍历)
1064 Complete Binary Search Tree (30 分) A Binary Search Tree (BST) is recursively defined as a bin ...
- PAT Advanced 1064 Complete Binary Search Tree (30) [⼆叉查找树BST]
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- 1064 Complete Binary Search Tree (30分)(已知中序输出层序遍历)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...
随机推荐
- acm系统开发笔记
时间: 2016/2/29 遇到的困难: 数据库配置的mysql和java(Date)不一致,出现下面错误 Date date = new Date(); SimpleDateFormat ...
- diskpart查看硬盘序列号
WIN + R键运行cmd,进如DOS界面: 1. systeminfo查看OS初始安装时间 2. diskpart工具查看硬盘序列号 (1)diskpart (2)lisk disk 查看主机安装的 ...
- SQL Server Management Studio 已停止工作 异常错误
找到类似环境下sql的路径 D:\Program Files (x86)\Microsoft SQL Server\100\Tools\Binn\VSShell\Common7\IDE\ 复制出 Ss ...
- Thinkphp 3.2.2 利用phpexcel完成excel导出功能
首先百度搜索phpexcel 包,放到项目的这个目录下 接下来 是controller里的导出代码 /**导出预定产品用户信息 * 大白驴 675835721 *2016-12-12 **/pub ...
- Java Bean
Java 帝国之Java bean (上) Java 帝国之Java bean(下) Difference between DTO, VO, POJO, JavaBeans? Java bean 是个 ...
- 判断Sql Server2008中ntext不为空
select * from 表名 where datalength(列名)=0 or datalength(列名) is null
- 完美解决google无法访问
1.进入短信界面 2.菜单-设置 3.修改短信中心号码(Set the SIM's smsc number) 保存 [测试结果]:提示保存成功,但是号码没有改变,退出重新进入设置才会看到号码更新 [预 ...
- 忠告初学者学习Linux系统的8点建议
导读 新手或者说即将要入坑的小伙伴们,常常在QQ群或者在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的.例如:如何给添加的用户归属用户组,复制整个文件到另一个目录下面,磁盘合理划分,甚至 ...
- Android中Activity的生命周期
简介: 这个基本是必问的问题了,说一下你对Activity生命周期的理解,呵呵… onCreate, onStart, onResume, onPause, onStop, onDestroy, on ...
- jQuery LigerUI V1.2.2 (包括API和全部源码) 发布
前言 这次版本主要对树进行了加载性能上面的优化,并解决了部分兼容性的问题,添加了几个功能点. 欢迎使用反馈. 相关链接 API: http://api.ligerui.com/ 演示地 ...