GJM : 数据结构 - 轻松看懂机器学习十大常用算法 [转载]
转载请联系原文作者 需要获得授权,非法转载 原文作者将享受侵权诉讼
文/不会停的蜗牛(简书作者)
原文链接:http://www.jianshu.com/p/55a67c12d3e9
通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题。
每个算法都看了好几个视频,挑出讲的最清晰明了有趣的,便于科普。
以后有时间再对单个算法做深入地解析。
今天的算法如下:
- 决策树
- 随机森林算法
- 逻辑回归
- SVM
- 朴素贝叶斯
- K最近邻算法
- K均值算法
- Adaboost 算法
- 神经网络
- 马尔可夫
1. 决策树
根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。
2. 随机森林
在源数据中随机选取数据,组成几个子集
S 矩阵是源数据,有 1-N 条数据,A B C 是feature,最后一列C是类别
由 S 随机生成 M 个子矩阵
这 M 个子集得到 M 个决策树
将新数据投入到这 M 个树中,得到 M 个分类结果,计数看预测成哪一类的数目最多,就将此类别作为最后的预测结果
3. 逻辑回归
当预测目标是概率这样的,值域需要满足大于等于0,小于等于1的,这个时候单纯的线性模型是做不到的,因为在定义域不在某个范围之内时,值域也超出了规定区间。
所以此时需要这样的形状的模型会比较好
那么怎么得到这样的模型呢?
这个模型需要满足两个条件 大于等于0,小于等于1
大于等于0 的模型可以选择 绝对值,平方值,这里用 指数函数,一定大于0
小于等于1 用除法,分子是自己,分母是自身加上1,那一定是小于1的了
再做一下变形,就得到了 logistic regression 模型
通过源数据计算可以得到相应的系数了
最后得到 logistic 的图形
4. SVM
support vector machine
要将两类分开,想要得到一个超平面,最优的超平面是到两类的 margin 达到最大,margin就是超平面与离它最近一点的距离,如下图,Z2>Z1,所以绿色的超平面比较好
将这个超平面表示成一个线性方程,在线上方的一类,都大于等于1,另一类小于等于-1
点到面的距离根据图中的公式计算
所以得到 total margin 的表达式如下,目标是最大化这个 margin,就需要最小化分母,于是变成了一个优化问题
举个栗子,三个点,找到最优的超平面,定义了 weight vector=(2,3)-(1,1)
得到 weight vector 为(a,2a),将两个点代入方程,代入(2,3)另其值=1,代入(1,1)另其值=-1,求解出 a 和 截矩 w0 的值,进而得到超平面的表达式。
a 求出来后,代入(a,2a)得到的就是 support vector
a 和 w0 代入超平面的方程就是 support vector machine
5. 朴素贝叶斯
举个在 NLP 的应用
给一段文字,返回情感分类,这段文字的态度是positive,还是negative
为了解决这个问题,可以只看其中的一些单词
这段文字,将仅由一些单词和它们的计数代表
原始问题是:给你一句话,它属于哪一类
通过 bayes rules 变成一个比较简单容易求得的问题
问题变成,这一类中这句话出现的概率是多少,当然,别忘了公式里的另外两个概率
栗子:单词 love 在 positive 的情况下出现的概率是 0.1,在 negative 的情况下出现的概率是 0.001
6. K最近邻
k nearest neighbours
给一个新的数据时,离它最近的 k 个点中,哪个类别多,这个数据就属于哪一类
栗子:要区分 猫 和 狗,通过 claws 和 sound 两个feature来判断的话,圆形和三角形是已知分类的了,那么这个 star 代表的是哪一类呢
k=3时,这三条线链接的点就是最近的三个点,那么圆形多一些,所以这个star就是属于猫
7. K均值
想要将一组数据,分为三类,粉色数值大,黄色数值小
最开心先初始化,这里面选了最简单的 3,2,1 作为各类的初始值
剩下的数据里,每个都与三个初始值计算距离,然后归类到离它最近的初始值所在类别
分好类后,计算每一类的平均值,作为新一轮的中心点
几轮之后,分组不再变化了,就可以停止了
8. Adaboost
adaboost 是 bosting 的方法之一
bosting就是把若干个分类效果并不好的分类器综合起来考虑,会得到一个效果比较好的分类器。
下图,左右两个决策树,单个看是效果不怎么好的,但是把同样的数据投入进去,把两个结果加起来考虑,就会增加可信度
adaboost 的栗子,手写识别中,在画板上可以抓取到很多 features,例如 始点的方向,始点和终点的距离等等
training 的时候,会得到每个 feature 的 weight,例如 2 和 3 的开头部分很像,这个 feature 对分类起到的作用很小,它的权重也就会较小
而这个 alpha 角 就具有很强的识别性,这个 feature 的权重就会较大,最后的预测结果是综合考虑这些 feature 的结果
9. 神经网络
Neural Networks 适合一个input可能落入至少两个类别里
NN 由若干层神经元,和它们之间的联系组成
第一层是 input 层,最后一层是 output 层
在 hidden 层 和 output 层都有自己的 classifier
input 输入到网络中,被激活,计算的分数被传递到下一层,激活后面的神经层,最后output 层的节点上的分数代表属于各类的分数,下图例子得到分类结果为 class 1
同样的 input 被传输到不同的节点上,之所以会得到不同的结果是因为各自节点有不同的weights 和 bias
这也就是 forward propagation
10. 马尔可夫
Markov Chains 由 state 和 transitions 组成
栗子,根据这一句话 ‘the quick brown fox jumps over the lazy dog’,要得到 markov chain
步骤,先给每一个单词设定成一个状态,然后计算状态间转换的概率
这是一句话计算出来的概率,当你用大量文本去做统计的时候,会得到更大的状态转移矩阵,例如 the 后面可以连接的单词,及相应的概率
生活中,键盘输入法的备选结果也是一样的原理,模型会更高级
原文链接:http://www.jianshu.com/p/55a67c12d3e9
GJM : 数据结构 - 轻松看懂机器学习十大常用算法 [转载]的更多相关文章
- 轻松看懂机器学习十大常用算法 (Machine Learning Top 10 Commonly Used Algorithms)
原文出处: 不会停的蜗牛 通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题. 每个算法都看了 ...
- 机器学习十大常用算法(CITE 不会停的蜗牛 ) interesting
算法如下: 决策树 随机森林算法 逻辑回归 SVM 朴素贝叶斯 K最近邻算法 K均值算法 Adaboost 算法 神经网络 马尔可夫 1. 决策树 根据一些 feature 进行分类,每个节点提一个问 ...
- 看完它,你就全懂了十大Wifi芯片原厂!
看完它,你就全懂了十大Wifi芯片原厂! 来源:全球物联网观察 概要:不知不觉中,WiFi几乎已攻占了整个世界.现在只要你上网,可能就离不开WiFi了. 2014年是物联网WiFi市场关键的转折期 ...
- 机器学习——十大数据挖掘之一的决策树CART算法
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第23篇文章,我们今天分享的内容是十大数据挖掘算法之一的CART算法. CART算法全称是Classification ...
- 机器学习十大算法之KNN(K最近邻,k-NearestNeighbor)算法
机器学习十大算法之KNN算法 前段时间一直在搞tkinter,机器学习荒废了一阵子.如今想重新写一个,发现遇到不少问题,不过最终还是解决了.希望与大家共同进步. 闲话少说,进入正题. KNN算法也称最 ...
- 机器学习十大算法 之 kNN(一)
机器学习十大算法 之 kNN(一) 最近在学习机器学习领域的十大经典算法,先从kNN开始吧. 简介 kNN是一种有监督学习方法,它的思想很简单,对于一个未分类的样本来说,通过距离它最近的k个" ...
- 十大排序算法JavaScript实现总结
花费了几周的时间断断续续的练习和模仿与使用JavaScript代码实现了十大排序算法. 里面有每种算法的动图和静态图片演示,看到图片可以自己先按照图片的思路实现一下. github中正文链接,点击查看 ...
- SEO站长必备的十大常用搜索引擎高级指令
作为一个seo人员,不懂得必要的搜索引擎高级指令,不是一个合格的seo.网站优化技术配合一些搜索引擎高级指令将使得优化工作变得简单.今日就和大家聊聊SEO站长必备的十大常用搜索引擎高级指令的那些事儿. ...
- js十大排序算法收藏
十大经典算法排序总结对比 转载自五分钟学算法&https://www.cnblogs.com/AlbertP/p/10847627.html 一张图概括: 主流排序算法概览 名词解释: n: ...
随机推荐
- transform:rotate()将元素进行不同角度的旋转
通过设置transform:rotate()可以将元素进行不同角度的旋转: 下面是一些测试代码: <!DOCTYPE html> <html> <head> < ...
- Jquery 选择器 详解
在线文档地址:http://tool.oschina.net/apidocs/apidoc?api=jquery 各种在线工具地址:http://www.ostools.net/ 一.基本选择器 $( ...
- java异常处理:建立exception包,建立Bank类,类中有变量double balance表示存款,Bank类的构造方法能增加存款,Bank类中有取款的发方法withDrawal(double dAmount),当取款的数额大于存款时,抛出InsufficientFundsException,取款数额为负数,抛出NagativeFundsException,如new Bank(100),
建立exception包,建立Bank类,类中有变量double balance表示存款,Bank类的构造方法能增加存款,Bank类中有取款的发方法withDrawal(double dAmount ...
- ios app 打包上传 app store(Application Loader)
背景:使用Xcode 上传APP, 这个 有时候很慢,构建版本需要等很长时间,所以我推荐使用Application Loader 1.使用xocd 打包,导出.ipa文件 2. OK ,跟着上面做, ...
- 移动端BUG汇总
position:fixed问题 固定定位到底部会把最后一个元素盖住 你会发现最后一个字被盖住了,并且还滚动不下去. 解决方法: 给后一个元素添加一个高度,或者给body加margin-bottom ...
- KendoUI系列:DropDownList
1.基本使用 1>.创建Input <input id="dropDownList" /> <link href="@Url.Content(&q ...
- Android项目中,在一个数据库里建立多张表
一,创建一个公共的DBAdapter; 为了在整个程序运行期间调用该公共的数据库,我们定义了一个扩展自Application的CommDB类: 1,创建唯一的数据库: public class Com ...
- poj 2385Apple Catching(简单dp)
/* 题意: 有两棵苹果树,每一棵苹果树每一秒间隔的掉落下来一个苹果,一个人在树下接住苹果,不让苹果掉落! 人在两棵树之间的移动是很快的!但是这个人移动的次数是有限制的,问最多可以接住多少个苹果! 思 ...
- java多线程执行问题
class Demo extends Thread{ public Demo(String name){ super(name); } public void run(){ for(int i=0; ...
- 关于AJAX跨域调用ASP.NET MVC或者WebAPI服务的问题及解决方案
作者:陈希章 时间:2014-7-3 问题描述 当跨域(cross domain)调用ASP.NET MVC或者ASP.NET Web API编写的服务时,会发生无法访问的情况. 重现方式 使用模 ...