用caffe跑自己的数据,基于WINDOWS的caffe
本文详细介绍,如何用caffe跑自己的图像数据用于分类。
1 首先需要安装过程见 http://www.cnblogs.com/love6tao/p/5706830.html 同时依据上面教程,生成了caffe.exe
2 构建自己的数据集。分为train和val 两个数据集,本次实验为2分类任务,一个是包含汽车的图像,一个是不包含汽车图像,其中train 为训练数据集,该文件夹中图像命名格式为trainpos0000.jpg和trainneg0000.jpg,图像通过该命名方式连续编码,val为验证数据集或者叫测试数据,该文件夹中图像命名格式为test0000.jpg,和testneg0000.jpg。如下图所示
图像可以用过opencv中cvresize函数就行缩放到256*256.
然后需要准备标签数据,通过新建train.txt val.txt和test.txt就行设置。通过windows命令行进行自动生成,首先在运行中输入cmd ,出现DOS窗口,输入d: 切换到D盘,
再输入cd D:\caffe\caffe-master\caffe-master\mydata\train 切换到train文件夹下 ,输入命令“dir/s/on/b>d:/train.txt”,则会在D盘生成一个名为train的文本文件,里面存放着全部图像的路径。 通过查找替换,最终生成的 train.txt val.txt和test.txt 。其中val.txt和test.txt 相比,test没有标签
3 讲数据集转化为caffe的数据类型
caffe的数据类型为LMDB和leveldb,caffe并不处理原始数据,而是转化为LMDB或者LEVELDB格式,这样可以保持较高的IO效率。
怎么转换呢?在caffe工程中有convert_imageset的工程,对其进行编译,形成convert_imageset.exe即可。
然后利用create_imagenet.sh使数据集生成leveldb格式的文件。create_imagenet.sh放在examples/imagenet中,将它拷贝到数据集的路径下,本文数据集
关键的是修改create_imagenet.sh中的路径使之能够进行数据转换
example设定为数据集的路径 data也设定为数据集路径 tools为convert_imageset.exe的路径
train_data_root 训练数据集路径 val_data_root 测试数据集路径
后面resize为false则其不需要转换为256*256
由于本文是转为leveldb文件类型 添加了这一句代码 ”--backend=leveldb\ “ 同时注意train.txt val.txt的路径是data路径下,
运行该程序,生成了两个leveldb文件夹,ilsvrc12_train_leveldb和ilsvrc12_val_leveldb
4 计算图像的均值
首先生成compute_image_mean.exe文件,该文件在caffe工程中也存在对应程序,对其进行编译,形成compute_image_mean.exe即可。
然后在examples/imagenet下有一个sh文件make_imagenet_mean.sh,将它拷贝到个人数据文件夹mydata中,然后打开这个文件进行编辑。
example是数据集路径 data 为数据集路径 tools为compute_image_mean.exe路径
第9行为利用exe 对train_leveldb 数据生成 imagenet_mean.binaryproto
运行make_imagenet_mean.sh后,会生成了 imagenet_mean.binaryproto
5 开始设计网络
5.1 设置train_val.prototxt文件
从caffe-root\models\bvlc_reference_caffenet中拷贝train_val.prototxt进行修改。
设置 mean_file: 和数据source:
5.2 设置solver.prototxt文件
从caffe-root\models\bvlc_reference_caffenet中拷贝solver.prototxt进行修改。net的路径为上面设置的路径 ,后面迭代的参数按照实际情况修改。
5-3 训练网络,运行train_caffenet.sh文件
从caffe-root\\examples\imagenet中拷贝train_caffenet.sh进行修改。
设置caffe.exe路径 和上述solver.prototxt文件路径
训练结果:运行train_caffenet.sh文件效果
本机配置是win7+cude8.0+1080的显卡,可以看到loss在不断的降低。这是在设置好solve参数的情况下。
生成的model 为 mydata_iter_100.caffemodel
5-4 测试网络
在数据目录下新建一个文本文件,然后将后缀名改成sh。填入以下语句:
首先设置caffe.exe的路径 然后设置网络的路径,最后设置载入的训练参数路径。运行该sh文件,得到最后的分类正确率为:95%
到处,整个训练和测试过程走通了,后续就是调节参数的问题了。
用caffe跑自己的数据,基于WINDOWS的caffe的更多相关文章
- Windows下用Caffe跑自己的数据(遥感影像)
1 前言 Caffe对于像我这样的初学者来说是一款非常容易上手的深度学习框架.关于用Caffe跑自己的数据这样的博客已经非常多,感谢前辈们为我们提供的这么好的学习资源.这里我主要结合我所在的行业,说下 ...
- caffe跑densenet的错误:Message type "caffe.PoolingParameter" has no field named "ceil_mode".【转自CSDN】
最近看了densenet这篇论文,论文作者给了基于caffe的源码,自己在电脑上跑了下,但是出现了Message type “caffe.PoolingParameter” has no field ...
- Windows下caffe安装详解(仅CPU)
本文大多转载自 http://blog.csdn.net/guoyk1990/article/details/52909864,加入部分自己实战心得. 1.环境:windows 7\VS2013 2. ...
- CAFFE学习笔记(五)用caffe跑自己的jpg数据
1 收集自己的数据 1-1 我的训练集与测试集的来源:表情包 由于网上一幅一幅图片下载非常麻烦,所以我干脆下载了两个eif表情包.同一个表情包里的图像都有很强的相似性,因此可以当成一类图像来使用.下载 ...
- 判断OpenCV是否为共享库,Windows基于CMake编译Caffe需要opencv共享库
判断OpenCV是否为共享库,Windows基于CMake编译Caffe需要opencv共享库 TLDR 只考虑windows下opencv预编译包的情况. 对于opencv2.4.x系列,cmake ...
- Caffe+VS2015+python3的安装(基于windows)
在网上找了许多安装Caffe的教程 感觉全都是杂乱无章的 而且也没有详细的 只能自己当小白鼠来实验一次了 本次配置:CUDA 8.0+ CUDNN +VS 2015 +Python 3.5 + Ca ...
- 你的计算机也可以看懂世界——十分钟跑起卷积神经网络(Windows+CPU)
众所周知,如果你想研究Deep Learning,那么比较常用的配置是Linux+GPU,不过现在很多非计算机专业的同学有时也会想采用Deep Learning方法来完成一些工作,那么Linux+GP ...
- Wizard Framework:一个自己开发的基于Windows Forms的向导开发框架
最近因项目需要,我自己设计开发了一个基于Windows Forms的向导开发框架,目前我已经将其开源,并发布了一个NuGet安装包.比较囧的一件事是,当我发布了NuGet安装包以后,发现原来已经有一个 ...
- VC中基于 Windows 的精确定时[转]
在工业生产控制系统中,有许多需要定时完成的操作,如定时显示当前时间,定时刷新屏幕上的进度条,上位 机定时向下位机发送命令和传送数据等.特别是在对控制性能要求较高的实时控制系统和数据采集系统中,就更需要 ...
随机推荐
- Windows服务器安全加固实战(Windows Server 2008 R2和Windows Server 2012)
最近我们立方技术工作室在使用阿里云的过程中,发现服务器安全性也不是很高,而服务端的安全软件都很贵.为了为朋友们提供更加有效的解决方案,我们决定身体力行,高筑墙,大幅度提升服务器的安全防护级别! 主机安 ...
- PAT/简单模拟习题集(一)
B1001.害死人不偿命的(3n+1)猜想 (15) Description: 卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉 ...
- Metro UI 菜单(Winform)
我有个项目需要要到菜单导航,就自己动作做了一个,感觉还可以,分享给大家.下载地址:http://files.cnblogs.com/files/dyj057/MetroUIMenu.zip 主要代码: ...
- MongoDB索引的使用
Table of Contents 1. 基本索引 2. 联合索引 3. 索引类型 4. 索引管理 1 基本索引 在数据库开发中索引是非常重要的,对于检索速度,执行效率有很大的影响.本 文主要描述了M ...
- [Asp.net 开发系列之SignalR篇]专题一:Asp.net SignalR快速入门
一.前言 之前半年时间感觉自己有点浮躁,导致停顿了半年多的时间没有更新博客,今天重新开始记录博文,希望自己可以找回初心,继续沉淀.由于最近做的项目中用到SignalR技术,所以打算总结下Asp.net ...
- mongodb( 实现join)
mongodb提供ref和populate的方法,支持类似join的SQL操作.本文给出一个实际的例子: 1. 数据1: var daob = new Schema({ user: { type: S ...
- 人人都是 DBA(VII)B 树和 B+ 树
B 树(B-Tree)是为磁盘等辅助存取设备设计的一种平衡查找树,它实现了以 O(log n) 时间复杂度执行查找.顺序读取.插入和删除操作.由于 B 树和 B 树的变种在降低磁盘 I/O 操作次数方 ...
- 可拖动的DIV
在做WEB UI设计的时候,拖动某个HTML元素已经成为一种不能忽视的用户界面模式,比较典型的应用例子就是Dialog,一个元素是怎么实现拖动的呢?其实原理非常简单,要想实现首先得了解几个基本知识. ...
- javascript日常总结
如何去除掉inline-block元素之间的默认间距 前几天写一个页面 1 2 3 4 div{width:900px;} div li{ display:inline-block; width:30 ...
- Atitit 知识图谱的数据来源
Atitit 知识图谱的数据来源 2. 知识图谱的数据来源1 a) 百科类数据2 b) 结构化数据3 c) 半结构化数据挖掘AVP (垂直站点爬虫)3 d) 通过搜索日志(query record ...