先拿MT【100】的图表镇楼。

举几个例子:

【1】52张纸牌分发给4人,每人13张,问每人手中有一张小2的概率?

分析:第一步每人分一张小2,有4!种,然后48张牌平均分成4组有$\frac{48!}{12!12!12!12!}$易得概率为$4!\frac{48!(13!)^4}{52!(12!)^4}$大概为10.55%,有兴趣也可以算一下四张2都在某个人手里的概率。

【2】$(x+y+z+w)^5$的展开式有多少项?

分析:每一项都是5次方,相当于5个无区别的小球放入4个有标志的盒子里.每个盒子里放的球不加限制。也就是上表中第4种情况,有56种。$(x+y+z+w)^5$展开式如下:

注:顺便讲一下$x^2y^2z^1w^0$前的系数计算公式为$\frac{5!}{2!2!1!0!}$可以类比二项式定理$(x+y)^5$展开中$x^2y^3$前的系数公式$\frac{5!}{2!3!}$。

【3】$x_1+x_2+\cdots+x_k\le n$的非负整数解的个数.

分析:定义如下映射$(x_1,x_2,\cdots,x_k)\mapsto (x_1+1,x_1+x_2+1,\cdots,x_1+\cdots+x_k+k)$是$x_1+x_2+\cdots+x_k\le n$的非负整数解集到$\{1,2,\cdots,n+k\}$中取$k$项严格单调递增数列集合的一个一一映射,有$\dbinom{k+n}{k}$

注:这里可以得到一个恒等式:$\sum_{i=0}^{n}\dbinom{k+i-1}{i}=\dbinom{k+n}{n}$

【4】已知$b_1+2b_2+\cdots+nb_n=n$其中$b_1,b_2,\cdots,b_n\in N$,把$\{1,2,\cdots,n\}$的一个全排列放入以下框架中

问有多少种不同形式.

答:$\frac{n!}{b_1!b_2!\cdots b_n!1^{b_1}2^{b_2}\cdots n^{b_n}}$即对称群$S_n$中$1^{b_1}2^{b_2}\cdots n^{b_n}$型的元素个数。

MT【101】分配问题举例若干的更多相关文章

  1. ocp11g培训内部教材_052课堂笔记(042)_体系架构

    OCP 052 课堂笔记 目录 第一部分: Oracle体系架构... 4 第一章:实例与数据库... 4 1.Oracle 网络架构及应用环境... 4 2.Oracle 体系结构... 4 3. ...

  2. 2016-04-25-信息系统实践手记5-CACHE设计一例

    layout: post title: 2016-04-25-信息系统实践手记5-CACHE设计一例 key: 20160425 tags: 业务 场景 CACHE 系统分析 系统设计 缓存 modi ...

  3. 用Redis实现分布式锁 与 实现任务队列

    这一次总结和分享用Redis实现分布式锁 与 实现任务队列 这两大强大的功能.先扯点个人观点,之前我看了一篇博文说博客园的文章大部分都是分享代码,博文里强调说分享思路比分享代码更重要(貌似大概是这个意 ...

  4. MDU某产品OMCI模块代码质量现状分析

    说明 本文参考MDU系列某产品OMCI模块现有代码,提取若干实例以说明目前的代码质量,亦可作为甄别不良代码的参考. 本文旨在就事论事,而非否定前人(没有前人的努力也难有后人的进步).希望以史为鉴,不破 ...

  5. POJ 1050

    #include <stdio.h> #include <string.h> #define mt 101 int main() { int a[mt][mt]; int st ...

  6. PL/SQL 04 游标 cursor

    --游标 declare  cursor 游标名字  is  查询语句;begin  其他语句;end; --游标的属性%FOUND%NOTFOUND%ISOPEN%ROWCOUNT(当前游标的指针位 ...

  7. MT【100】经典计数之分配问题

    注意:此讲适合联赛一试学生,以及参加清华北大等名校的自主招生的学生. 经典计数之分配问题:把n个球放进k个盒子.考虑分配方法有三类:1.无限制 2.每个盒子至多一个(f 单的)3.每个盒子至少一个(f ...

  8. MT【29】介绍向量的外积及应用举例

    我们在学校教材里学到的数量积(内积)其实还有一个孪生兄弟向量积(外积),这个对参加自主招生以及竞赛的学生来讲是需要掌握的,这里稍作介绍: 原理: 例题: 应用:

  9. Assignment Problem的若干思考

      最近受到南京一个同学的push,又开始了博客园写作之旅.欢迎大家联系我做代码实现工作,QQ:1198552514.权当赚点生活费~ 我的研究也经常用的Assignment problem,而且很多 ...

随机推荐

  1. Mysq性能分析 —— Genral log(普通日志)与 Slow log(慢速日式)

    对Mysql进行深入的分析对于发现mysql性能瓶颈和寻找优化策略是十分必要的. 我们可以从不同的粒度上对Mysql进行分析:可以整体分析服务器,或者检查单个查询或批查询.通过分析,我们得到的如下信息 ...

  2. SVN之 trunk, branches and tags意义

    --简单的对照 SVN的工作机制在某种程度上就像一颗正在生长的树: 一颗有树干和很多分支的树 分支从树干生长出来.而且细的分支从相对较粗的树干中长出 一棵树能够仅仅有树干没有分支(可是这样的情况不会持 ...

  3. 20155234 昝昕明 《网络对抗技术》实验一 PC平台逆向破解

    实践内容: 手工修改可执行文件,改变程序执行流程,直接跳转到getShell函数. 利用foo函数的Bof漏洞,构造一个攻击输入字符串,覆盖返回地址,触发getShell函数. 注入一个自己制作的sh ...

  4. 记一次SpringMVC碰到的坑

            在SpringMVC中,我们Controller中接收比如表单的参数,只要保证方法的形参的名字和表单中input元素的的name一样就可以接收到参数.         但是,我开发的一 ...

  5. [Zlib]_[初级]_[使用zlib库压缩和解压STL string]

    场景 1.一般在使用文本json传输数据, 数据量特别大时,传输的过程就特别耗时, 因为带宽或者socket的缓存是有限制的, 数据量越大, 传输时间就越长. 网站一般使用gzip来压缩成二进制. 说 ...

  6. 解决 引入本地jar包后 maven无法编译的问题及部署war包缺失本地jar包的问题

    参考:https://blog.csdn.net/wang864676212/article/details/82626922 pom.xml 引入 <plugin> <plugin ...

  7. idea Cannot Resolve Symbol 问题解决

    总结:要多根据有问题的提示来进行百度搜索,这一次我就是搜索了 idea 提示的错误信息 Cannot Resolve Symbol ,才找到的解决方案,所以说出现问题,如果不是很复杂的场景或者原因很多 ...

  8. 手撸orm

    ORM简介 ORM即Object Relational Mapping,全称对象关系映射.当我们需要对数据库进行操作时,势必需要通过连接数据.调用sql语句.执行sql语句等操作,ORM将数据库中的表 ...

  9. 01.如何把.py文件打包成为exe,重点讲解pyinstaller的用法

    1.应用场景 1.1 故事背景 我自己用python写了一个小程序发给其他同事用,给他的就是一个.py文件,不过他觉得比较麻烦,还要安装环境,他问我有没有简单一点的方式,我给一个exe文件,他就不用安 ...

  10. 虚拟机console基础环境部署——安全加固

    1. 概述 安全是一个重要的课题.广义上可以总结为: 主机安全 网络安全 信息安全 数据安全 虽然console已经是最小化安装,但是这并不能说明console就已经安全了.之前的博客对console ...