(2018武汉大学自招)设$x,y,z\ge0,xy+yz+zx=1$证明:$\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge \dfrac{5}{2}$

证明:
\begin{align*}
\textbf{原式} & \iff 2\sum{(y+z)(z+x)}-5\prod(x+y)\ge0\\
& \iff 2\sum{z^2+(x+y)z+xy}-5\left((x+y+z)(xy+yz+zx)-xyz\right)\ge0\\
& \iff 2(x+y+z)^2+2-5(x+y+z)+5xyz\ge0
\end{align*}
记$a=x+y+z,b=xy+yz+zx,c=xyz$则只需证明:$2a^2-5a+5c+2\ge0$
若$a>2$则$2a^2-5a+5c+2\ge2a^2-5a+2=(2a-1)(a-2)\ge0$成立
若$a\le2$则由舒尔不等式:
$\sum{x(x-y)(x-z)=(\sum x)^3-4\sum{x}\sum{xy}+9xyz=a^3-4ab+9c=a^3-4a+9c\ge0}$ 得
$c\ge\dfrac{-a^3+4a}{9}$
故$2a^2-5a+5c+2\ge\dfrac{-5a^3+18a^2-25a+18}{9}\ge0$(由单调递减易得)当$(x,y,z)=(1,1,0)$时取到等号.

事实上还有如下天书上的证明:

(Chen  Ji )

事实上还可证明最大值:
$x,y,z\ge0,xy+yz+zx=1$时$\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\le\sqrt{\dfrac{27}{4}}$
提示:利用均值:$\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\le\sqrt{3\sum\dfrac{1}{(x+y)^2}}\le\sqrt{\dfrac{27}{4}}$
最后一步是著名的伊朗96不等式.
最后给一个利用上面方法的练习:(2011年全国联赛B卷二试第三题)

已知$a,b,c\ge1$且满足:$abc+2a^2+2b^2+2c^2+ca-cb-4a+4b-c=28,$求$a+b+c$的最大值.

MT【200】一道自招的不等式的更多相关文章

  1. MT【98】三元对称不等式

    评:这是一道浙江省省赛题,这里利用对称性,设$x\le y\le z$从而解决了问题.值得注意的是此处三元轮换对称正好也是完全对称,但如果变成一般的$n\ge4$元对称问题时,就不能设大小关系.事实上 ...

  2. MT【327】两道不等式题

    当$x,y\ge0,x+y=2$时求下面式子的最小值:1)$x+\sqrt{x^2-2x+y^2+1}$2)$\dfrac{1}{5}x+\sqrt{x^2-2x+y^2+1}$ 解:1)$P(x,y ...

  3. MT【18】幂平均不等式的证明

    评:证明时对求导要求较高,利用这个观点,对平时熟悉的调和平均,几何平均,算术平均,平方平均有了更深 刻的认识.

  4. AtCoder Grand Contest 017 (VP)

    contest link Official Editorial 比赛体验--之前做题的时候感觉 AtCoder 挺快的,现在打了VP之后发现还是会挂的--而且不是加载缓慢或者载不出来,直接给你一个无法 ...

  5. CF651B-Beautiful Paintings

    B. Beautiful Paintings time limit per test 1 second memory limit per test 256 megabytes input standa ...

  6. P2764 最小路径覆盖问题 题解(二分图)

    建图思路很明确,拆点跑最大匹配,但这明显是个二分图的题题解居然只有一篇匈牙利算法. 发一种和之前那篇匈牙利思路略有不同的题解. 本题的难点就是如何输出,那么我们不妨在建图的时候加入一个原则,即:连边时 ...

  7. MT【57】2017联赛一试解答倒数第二题:一道不等式的最值

    注:康拓诺维奇不等式的应用

  8. MT【274】一道漂亮的不等式题

    已知$x_1^2+x_2^2+\cdots+x_6^2=6,x_1+x_2+\cdots+x_6=0,$证明:$x_1x_2\cdots x_6\le\dfrac{1}{2}$ 解答:显然只需考虑2个 ...

  9. MT【230】一道代数不等式

    设$a,b,c>0,$满足$a+b+c\le abc$证明:$\dfrac{1}{\sqrt{1+a^2}}+\dfrac{1}{\sqrt{1+b^2}}+\dfrac{1}{\sqrt{1+ ...

随机推荐

  1. Hadoop Version History and Feature

    Versions and Features Hadoop has seen significant interest over the past few years. This has led to ...

  2. 1.3《想成为黑客,不知道这些命令行可不行》(Learn Enough Command Line to Be Dangerous)——手册页

    我们运行的命令行程序,通常在技术上称作shell, 它包含了一个非常强大(也很神秘)的工具,我们将用它来学习更多可用的命令.这个工具本身就是个称作'man'的命令('manual'的简写).它的参数是 ...

  3. Nginx 服务器的安装部署(CentOS系统)

    1.准备安装环境yum -y install gcc gcc-c++ automake pcre pcre-devel zlib zlib-devel open openssl-develgcc编译器 ...

  4. excel实用技巧——vlookup函数

    1.VLOOKUP函数的套路 VLOOKUP(要找谁,在哪儿找,返回第几列的内容,精确找还是近似找) 最后一个参数: 如果为0或FASLE,用精确匹配方式,而且支持无序查找: 如果为TRUE或被省略, ...

  5. python 回溯法 子集树模板 系列 —— 11、全排列

    问题 实现 'a', 'b', 'c', 'd' 四个元素的全排列. 分析 这个问题可以直接套用排列树模板. 不过本文使用子集树模板.分析如下: 一个解x就是n个元素的一种排列,显然,解x的长度是固定 ...

  6. mongodb安装教程

    MongoDB 下载及安装 MongoDB 提供了可用于 32 位和 64 位系统的预编译二进制包,你可以从MongoDB官网下载安装,MongoDB 预编译二进制包下载地址:https://www. ...

  7. Android Studio Xposed模块编写(二)

    阅读本文前,假设读者已经看过Android Studio Xposed模块编写(一)  相关环境已经搭建完成.本文演示案例与上文环境一致,不在赘述. 1.概述 Xposed是非常牛叉的一款hook框架 ...

  8. 11、Dockerfile实战-Tomcat

    一.编写Dockerfile 具体步骤这里不再细说,直接看Dockerfile文件: FROM centos:7 MAINTAINER QUNXUE ENV VERSION=8.0.46 RUN yu ...

  9. Spring+SpringMVC+MyBatis+easyUI整合优化篇(一)Java语言中System.out.print与Log的比较

    作者:13 GitHub:https://github.com/ZHENFENG13 版权声明:本文为原创文章,未经允许不得转载. 前言 距离上一次更新博客有一段时间了,主要是因为最近有开发任务,另外 ...

  10. 从头到尾谈一下HTTPS

    引言 “你能谈一下HTTPS吗?” “一种比HTTP安全的协议.” “...” 如果面试这样说的话那差不多就gg了,其实HTTPS要展开回答的话内容还挺丰富的.本篇文章详细介绍了HTTPS是什么.为什 ...