题意

求\(\sum_{k=1}^{n}k^mm^k (n\leq1e9,m\leq1e3)\)

思路

在<<具体数学>>中有一个方法用来求和,称为摄动法。

我们考虑用摄动法来求这个和式,看能不能得到比较好的复杂度。

首先令\(f(i)=\sum_{k=1}^nk^im^{k}\)。

然后开始表演

\[\begin{align*}
(m-1)f(i)&=\sum_{k=1}^nk^im^{k+1}-\sum_{k=1}^nk^im^k \\
&=\sum_{k=1}^{n+1}(k-1)^im^k-\sum_{k=1}^nk^im^k\\
&=n^im^{n+1}+\sum_{k=1}^nm^k\sum_{j=0}^{i-1}C_i^j(-1)^{i-j}k^j\\
&=n^im^{n+1}+\sum_{j=0}^{i-1}C_i^j(-1)^{i-j}\sum_{k=1}^nk^jm^k\\
&=n^im^{n+1}+\sum_{j=0}^{i-1}C_i^j(-1)^{i-j}f(j)
\end{align*}
\]

于是我们很神奇的得到了一个\(O(m^2)\)的递推式。

对于解决此题已经足够了。

另外对于这个和式有多项式插值法可以\(O(m)\)解决。

具体例题bzoj4126。

代码

# include<bits/stdc++.h>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-8
# define MOD 1000000007
# define INF 1e16
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(register int i=a; i<=n; ++i)
# define FDR(i,a,n) for(register int i=a; i>=n; --i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
inline char nc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int Scan(){
char ch=nc();int sum=0, f=1;
if (ch=='-') f=-1, ch=nc();
while(!(ch>='0'&&ch<='9'))ch=nc();
while(ch>='0'&&ch<='9')sum=sum*10+ch-48,ch=nc();
return sum*f;
}
const int N=1005;
//Code begin.... LL C[N][N], ANS[N], INV, COM, P; LL pow_mod(LL a, LL n, LL mod){
LL ret=1, tmp=a%mod;
while (n) {
if (n&1) ret=ret*tmp%MOD;
tmp=tmp*tmp%MOD;
n>>=1;
}
return ret;
}
LL inv(LL a, LL mod){return pow_mod(a,mod-2,mod);}
void init(){
FOR(i,0,1000) {
C[i][0]=C[i][i]=1;
FOR(j,1,i-1) C[i][j]=(C[i-1][j-1]+C[i-1][j])%MOD;
}
}
int main ()
{
int n, m;
init();
scanf("%d%d",&n,&m);
if (m==1) {printf("%lld\n",(LL)n*(n+1)/2%MOD); return 0;}
INV=inv(m-1,MOD); COM=pow_mod(m,n+1,MOD);
ANS[0]=(COM-m)*INV%MOD; P=1;
if (ANS[0]<0) ANS[0]+=MOD;
FOR(i,1,m) {
P=P*n%MOD;
LL sum=P*COM%MOD;
FOR(j,0,i-1) {
if ((i+j)&1) sum-=C[i][j]*ANS[j]%MOD;
else sum+=C[i][j]*ANS[j]%MOD;
}
sum%=MOD;
if (sum<0) sum+=MOD;
ANS[i]=sum*INV%MOD;
}
printf("%lld\n",ANS[m]);
return 0;
}

BZOJ 3516 国王奇遇记加强版(乱推)的更多相关文章

  1. bzoj 3157 && bzoj 3516 国王奇遇记——推式子

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.p ...

  2. bzoj 3157 & bzoj 3516 国王奇遇记 —— 推式子

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.p ...

  3. 3157: 国王奇遇记 & 3516: 国王奇遇记加强版 - BZOJ

    果然我数学不行啊,题解君: http://www.cnblogs.com/zhuohan123/p/3726933.html const h=; var fac,facinv,powm,s:..]of ...

  4. BZOJ3157: 国王奇遇记 & 3516: 国王奇遇记加强版

    令\[S_i=\sum_{k=1}^n k^i m^k\]我们有\[\begin{eqnarray*}(m-1)S_i & = & mS_i - S_i \\& = & ...

  5. [BZOJ 3157] 国王奇遇记

    Link: BZOJ 3157 传送门 Solution: 题意:求解$\sum_{i=1}^n m^i \cdot {i^m}$ $O(m^2)$做法: 定义一个函数$f[i]$,$f[i]=\su ...

  6. BZOJ 3157: 国王奇遇记 (数学)

    题面:BZOJ3157 一句话题意: 求: \[ \sum_{i=1}^ni^m\ \times m^i\ (mod\ 1e9+7)\ \ (n \leq 1e9,m\leq200)\] 题解 令 \ ...

  7. BZOJ3157 国王奇遇记——神奇的推式子

    先膜一发Miskcoo,大佬的博客上多项式相关的非常全 原题戳我 题目大意 求 \[\sum\limits_{i=1}^{n}i^mm^i\] 题解 设一个函数\(f(i)=\sum\limits_{ ...

  8. bzoj3157 3516 国王奇遇记

    Description Input 共一行包括两个正整数N和M. Output 共一行为所求表达式的值对10^9+7取模的值. 特判m=1 m≠1时: 设S[u]=sigma(i^u*m^i) m*S ...

  9. 【BZOJ】【3157】&【BZOJ】【3516】国王奇遇记

    数论 题解:http://www.cnblogs.com/zhuohan123/p/3726933.html copy一下推导过程: 令$$S_i=\sum_{k=1}^{n}k^im^k$$ 我们有 ...

随机推荐

  1. CentOS7+ anaconda3 + Python-3.6 + tensorflow-cpu-1.5安装和配置

    CentOS7+ anaconda3 + Python-3.6 + tensorflow-cpu-1.5安装和配置 ========================================== ...

  2. tar 压缩 解压 打包命令

    01-.tar格式 解包:[*******]$ tar xvf FileName.tar 打包:[*******]$ tar cvf FileName.tar DirName(注:tar是打包,不是压 ...

  3. 转自:strcmp函数实现及详解

    strcmp函数是C/C++中基本的函数,它对两个字符串进行比较,然后返回比较结果,函数形式如下:int strcmp(constchar*str1,constchar*str2);其中str1和st ...

  4. python 字典,元组,对象,数组取值方法

    def create(self,cr,uid,vals,context=None): if context is None: context ={} if vals.get('name','/')== ...

  5. [Usaco2009 Feb]Revamping Trails 道路升级 BZOJ1579

    分析: 比较裸的分层图最短路,我的实现方式是,每次求出1所有节点的最短路,之后用每一个节点更新与其相连的节点(取较小值),之后做K次,就求出了分层图的最短路了. 附上代码: #include < ...

  6. 总结:C# 委托的全面理解

    在说事件之前得先了解委托. 委托,外表看来和C/C++中函数指针没什么区别,但是本质上你才发现他其实就是个类!也就是说理解委托得从 这个两个方面去理解(单从一个方面去理解感觉就怪怪的呵呵!) 理解委托 ...

  7. ubuntu下安装搜狗输入法

    1.如果系统中未安装依赖fcitx,libssh2-1,或者依赖fcitx,libssh2-1的版本低的话,则需提前安装或者升级,否则安装输入法时会出错 安装命令 sudo apt-get insta ...

  8. [APIO2013]机器人[搜索、斯坦纳树]

    题意 题目链接 分析 记 g(d,x,y) 表示从 (x,y) 出发,方向为 d 到达的点,这个可以通过记忆化搜索求出,注意如果转移成环(此时向这个方向走没有意义)要特判. 记 f(l,r,x,y) ...

  9. HashMap 源码解析(一)之使用、构造以及计算容量

    目录 简介 集合和映射 HashMap 特点 使用 构造 相关属性 构造方法 tableSizeFor 函数 一般的算法(效率低, 不值得借鉴) tableSizeFor 函数算法 效率比较 tabl ...

  10. .Net单元测试业务实践

    使用次数和允许取消次数单元测试实践 /** * prism.js Github theme based on GitHub's theme. * @author Sam Clarke */ code[ ...