li {list-style-type:decimal;}ol.wiz-list-level2 > li {list-style-type:lower-latin;}ol.wiz-list-level3 > li {list-style-type:lower-roman;}blockquote {padding:0 12px;padding:0 0.75rem;}blockquote > :first-child {margin-top:0;}blockquote > :last-child {margin-bottom:0;}img {border:0;max-width:100%;height:auto !important;margin:2px 0;}table {border-collapse:collapse;border:1px solid #bbbbbb;}td, th {padding:4px 8px;border-collapse:collapse;border:1px solid #bbbbbb;min-height:28px;word-break:break-all;box-sizing: border-box;}.wiz-hide {display:none !important;}
-->
span::selection, .CodeMirror-line > span > span::selection { background: #d7d4f0; }.CodeMirror-line::-moz-selection, .CodeMirror-line > span::-moz-selection, .CodeMirror-line > span > span::-moz-selection { background: #d7d4f0; }.cm-searching {background: #ffa; background: rgba(255, 255, 0, .4);}.cm-force-border { padding-right: .1px; }@media print { .CodeMirror div.CodeMirror-cursors {visibility: hidden;}}.cm-tab-wrap-hack:after { content: ""; }span.CodeMirror-selectedtext { background: none; }.CodeMirror-activeline-background, .CodeMirror-selected {transition: visibility 0ms 100ms;}.CodeMirror-blur .CodeMirror-activeline-background, .CodeMirror-blur .CodeMirror-selected {visibility:hidden;}.CodeMirror-blur .CodeMirror-matchingbracket {color:inherit !important;outline:none !important;text-decoration:none !important
-->

作者

彭东林
QQ 405728433
 

平台

Linux-4.10.17
Qemu-2.8 + vexpress-a9
DDR:1GB
 

概述

前面分析了用kzalloc分配内核缓冲区并通过remap_pfn_range的方式将其映射到用户空间的示例,能否用其他方式分配内核缓冲区并映射到用户空间呢?
当然可以,下面分别用alloc_pages和vmalloc来实现。
 
对应的驱动以及测试程序可以到下面的地址下载:
 

正文

 

一、用alloc_pages来实现

alloc_pages的函数原型如下:
 #define alloc_pages(gfp_mask, order) \
alloc_pages_node(numa_node_id(), gfp_mask, order) static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
unsigned int order)
{
if (nid == NUMA_NO_NODE)
nid = numa_mem_id(); return __alloc_pages_node(nid, gfp_mask, order);
}
它返回值的类型是struct page *,要获取对应的物理页帧或者虚拟地址的话,需要用专门的函数。这个函数可以保证分配到的物理内存是连续的。需要注意的是,如果是从低端内存分配出来的内存,在内核空间可以利用page_address()很容易的获取其对应的虚拟地址,但是如果是从高端内存区分配的内存,如果要在内核空间访问的话,需要先用kmap这样的函数将其映射到kmap区,然后才能访问。
但是对于remap_pfn_range来说就不用担心,只要保证要映射的size大小的空间对应物理地址是连续的就可以,alloc_pages可以满足。为了简便,在调用alloc_pages的时候可以将gfp_mask设置为GFP_KERNEL,这样可以保证从低端内存区分配连续的物理页帧。
 
下面是驱动的实现:
首先在驱动init的是否分配32个page:
static struct page *start_page = alloc_pages(GFP_KERNEL, get_order(BUF_SIZE));

这里的BUF_SIZE是32*(PAGE_SIZE),也就是128KB,函数get_order计算可以存放下BUF_SIZE的最小阶数。

 
然后用下面的方式将其映射到用户空间:
 static int remap_pfn_mmap(struct file *file, struct vm_area_struct *vma)
{
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
unsigned long pfn_start = page_to_pfn(start_page) + vma->vm_pgoff;
unsigned long virt_start = (unsigned long)page_address(start_page);
unsigned long size = vma->vm_end - vma->vm_start;
int ret = ; printk("phy: 0x%lx, offset: 0x%lx, size: 0x%lx\n", pfn_start << PAGE_SHIFT, offset, size); ret = remap_pfn_range(vma, vma->vm_start, pfn_start, size, vma->vm_page_prot);
if (ret)
printk("%s: remap_pfn_range failed at [0x%lx 0x%lx]\n",
__func__, vma->vm_start, vma->vm_end);
else
printk("%s: map 0x%lx to 0x%lx, size: 0x%lx\n", __func__, virt_start,
vma->vm_start, size); return ret;
}
第4行使用了page_to_pfn将start_page指向的struct page结构体转换为对应的物理页帧号,当然不要忘记加上用户期望的offset
第5行, page_address利用start_page指向的struct page结构体得到其在内核空间的虚拟地址,因为是从低端内存分配的,所以可以返回正确的虚拟地址。如果使用高端内存分配的,并且没有用kmap这样的函数映射到内核空间的话,page_address返回NULL
第6行,获得vma表示的虚拟内存区域的尺寸
第11行,调用remap_pfn_range将物理内存映射到用户空间
 

二、用vmalloc实现

vmalloc比较特殊,使用它分配的内存虚拟地址是连续的,但是不保证物理页帧也连续,这里不保证的意思是也可能是连续的。什么原因呢? 因为vmalloc在分配内存时是调用alloc_page一页一页的分配,就是每次从伙伴系统只分配一页,然后将分配得到的单页物理页帧映射到内核的vmalloc区连续的虚拟地址上。
比如:我想用vmalloc分配128KB的内存,vmalloc计算发现需要分配32个page,然后会调用32次alloc_page(),每次从伙伴系统分配1个page,每分配一个page就将该page映射到准备好的连续的虚拟地址上,当然也就无法保证这些page之间对应的物理页帧的连续性。
 
知道了vmalloc分配内存的特点,那么在调用remap_pfn_range的时候就需要注意,必须一页一页地映射。
 
下面看驱动。
 
同样,在驱动的init函数中分配128KB的空间:
static void *kbuff = vmalloc(BUF_SIZE);
然后使用下面的方式映射:
 static int remap_pfn_mmap(struct file *file, struct vm_area_struct *vma)
{
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
unsigned long virt_start = (unsigned long)kbuff + (unsigned long)(vma->vm_pgoff << PAGE_SHIFT);
unsigned long pfn_start = (unsigned long)vmalloc_to_pfn((void *)virt_start);
unsigned long size = vma->vm_end - vma->vm_start;
int ret = ;
unsigned long vmstart = vma->vm_start;
int i = ; printk("phy: 0x%lx, offset: 0x%lx, size: 0x%lx\n", pfn_start << PAGE_SHIFT, offset, size); while (size > ) {
ret = remap_pfn_range(vma, vmstart, pfn_start, PAGE_SIZE, vma->vm_page_prot);
if (ret) {
printk("%s: remap_pfn_range failed at [0x%lx 0x%lx]\n",
__func__, vmstart, vmstart + PAGE_SIZE);
ret = -ENOMEM;
goto err;
} else
printk("%s: map 0x%lx (0x%lx) to 0x%lx , size: 0x%lx, number: %d\n", __func__, virt_start,
pfn_start << PAGE_SHIFT, vmstart, PAGE_SIZE, ++i); if (size <= PAGE_SIZE)
size = ;
else {
size -= PAGE_SIZE;
vmstart += PAGE_SIZE;
virt_start += PAGE_SIZE;
pfn_start = vmalloc_to_pfn((void *)virt_start);
}
} return ;
err:
return ret;
}
第4行,计算内核缓冲区中将要被映射到用户空间的位置的虚拟起始地址virt_start
第5行,调用vmalloc_to_pfn将由vmalloc分配的虚拟地址转换为对应的物理页帧号
第13行到32行的while循环调用remap_pfn_range,每次映射PAGE_SIZE,即4KB,每映射完一页,都要计算下一个虚拟地址对应的物理页帧号。
 
下面用user_5测试一下使用vmalloc分配内核缓冲区的驱动。
 
运行user_5,可以得到如下的log:
 [11712.435630] client: user_5 ()
[11712.435741] code section: [0x8000 0x8828]
[11712.435839] data section: [0x10828 0x10964]
[11712.435936] brk section: s: 0x11000, c: 0x11000
[11712.436042] mmap section: s: 0xb6f1b000
[11712.436131] stack section: s: 0xbefc6e20
[11712.436256] arg section: [0xbefc6f23 0xbefc6f2c]
[11712.436378] env section: [0xbefc6f2c 0xbefc6ff3]
[11712.436603] phy: 0x9fdf8000, offset: 0x0, size: 0x20000
[11712.436767] remap_pfn_mmap: map 0xf1443000 (0x9fdf8000) to 0xb6d69000 , size: 0x1000, number:
[11712.436991] remap_pfn_mmap: map 0xf1444000 (0x9fdf7000) to 0xb6d6a000 , size: 0x1000, number:
[11712.437210] remap_pfn_mmap: map 0xf1445000 (0x9fdf6000) to 0xb6d6b000 , size: 0x1000, number:
[11712.437429] remap_pfn_mmap: map 0xf1446000 (0x9fdf5000) to 0xb6d6c000 , size: 0x1000, number:
[11712.437647] remap_pfn_mmap: map 0xf1447000 (0x9fdf4000) to 0xb6d6d000 , size: 0x1000, number:
[11712.437862] remap_pfn_mmap: map 0xf1448000 (0x9fdf3000) to 0xb6d6e000 , size: 0x1000, number:
[11712.438086] remap_pfn_mmap: map 0xf1449000 (0x9fdf2000) to 0xb6d6f000 , size: 0x1000, number:
[11712.438305] remap_pfn_mmap: map 0xf144a000 (0x9fdf1000) to 0xb6d70000 , size: 0x1000, number:
[11712.438535] remap_pfn_mmap: map 0xf144b000 (0x9fdf0000) to 0xb6d71000 , size: 0x1000, number:
[11712.438752] remap_pfn_mmap: map 0xf144c000 (0x9fdef000) to 0xb6d72000 , size: 0x1000, number:
[11712.438966] remap_pfn_mmap: map 0xf144d000 (0x9fdee000) to 0xb6d73000 , size: 0x1000, number:
[11712.439198] remap_pfn_mmap: map 0xf144e000 (0x9fded000) to 0xb6d74000 , size: 0x1000, number:
[11712.439404] remap_pfn_mmap: map 0xf144f000 (0x9fdec000) to 0xb6d75000 , size: 0x1000, number:
[11712.440003] remap_pfn_mmap: map 0xf1450000 (0x9fdeb000) to 0xb6d76000 , size: 0x1000, number:
[11712.440145] remap_pfn_mmap: map 0xf1451000 (0x9fdea000) to 0xb6d77000 , size: 0x1000, number:
[11712.440319] remap_pfn_mmap: map 0xf1452000 (0x9fde9000) to 0xb6d78000 , size: 0x1000, number:
[11712.440499] remap_pfn_mmap: map 0xf1453000 (0x9fde8000) to 0xb6d79000 , size: 0x1000, number:
[11712.440680] remap_pfn_mmap: map 0xf1454000 (0x9fde7000) to 0xb6d7a000 , size: 0x1000, number:
[11712.440862] remap_pfn_mmap: map 0xf1455000 (0x9fde6000) to 0xb6d7b000 , size: 0x1000, number:
[11712.441065] remap_pfn_mmap: map 0xf1456000 (0x9fde5000) to 0xb6d7c000 , size: 0x1000, number:
[11712.441520] remap_pfn_mmap: map 0xf1457000 (0x9fde4000) to 0xb6d7d000 , size: 0x1000, number:
[11712.441819] remap_pfn_mmap: map 0xf1458000 (0x9fde3000) to 0xb6d7e000 , size: 0x1000, number:
[11712.442001] remap_pfn_mmap: map 0xf1459000 (0x9fde2000) to 0xb6d7f000 , size: 0x1000, number:
[11712.442182] remap_pfn_mmap: map 0xf145a000 (0x9fde1000) to 0xb6d80000 , size: 0x1000, number:
[11712.442370] remap_pfn_mmap: map 0xf145b000 (0x9fde0000) to 0xb6d81000 , size: 0x1000, number:
[11712.442558] remap_pfn_mmap: map 0xf145c000 (0x9fc0c000) to 0xb6d82000 , size: 0x1000, number:
[11712.442749] remap_pfn_mmap: map 0xf145d000 (0x9fc0d000) to 0xb6d83000 , size: 0x1000, number:
[11712.442944] remap_pfn_mmap: map 0xf145e000 (0x9fdc5000) to 0xb6d84000 , size: 0x1000, number:
[11712.443171] remap_pfn_mmap: map 0xf145f000 (0x9fdf9000) to 0xb6d85000 , size: 0x1000, number:
[11712.443355] remap_pfn_mmap: map 0xf1460000 (0x9fdfa000) to 0xb6d86000 , size: 0x1000, number:
[11712.443534] remap_pfn_mmap: map 0xf1461000 (0x9fdfb000) to 0xb6d87000 , size: 0x1000, number:
[11712.443711] remap_pfn_mmap: map 0xf1462000 (0x9fdfc000) to 0xb6d88000 , size: 0x1000, number:
可以看到,remap_pfn_mma被循环调用了32次,每次映射4KB,同时也可以看到每次映射的物理页帧之间有可能是连续的,也有可能不是连续的,具体跟当前系统中内存的碎片化程度有关,碎片化程度越高,上面的物理页帧之间的连续性也就越差。
此外,可以看到,vmalloc分配的内存的地址都落在了高端内存区的vmalloc区,而且虚拟地址都是连续的,用户的vma的虚拟内存区域地址也是连续的,只有物理内存不一定连续。比如下面几行:
 [11712.442182] remap_pfn_mmap: map 0xf145a000 (0x9fde1000) to 0xb6d80000 , size: 0x1000, number:
[11712.442370] remap_pfn_mmap: map 0xf145b000 (0x9fde0000) to 0xb6d81000 , size: 0x1000, number:
[11712.442558] remap_pfn_mmap: map 0xf145c000 (0x9fc0c000) to 0xb6d82000 , size: 0x1000, number:
[11712.442749] remap_pfn_mmap: map 0xf145d000 (0x9fc0d000) to 0xb6d83000 , size: 0x1000, number:
[11712.442944] remap_pfn_mmap: map 0xf145e000 (0x9fdc5000) to 0xb6d84000 , size: 0x1000, number:
[11712.443171] remap_pfn_mmap: map 0xf145f000 (0x9fdf9000) to 0xb6d85000 , size: 0x1000, number:
[11712.443355] remap_pfn_mmap: map 0xf1460000 (0x9fdfa000) to 0xb6d86000 , size: 0x1000, number:
[11712.443534] remap_pfn_mmap: map 0xf1461000 (0x9fdfb000) to 0xb6d87000 , size: 0x1000, number:
 
未完待续....

内存映射函数remap_pfn_range学习——示例分析(2)的更多相关文章

  1. 内存映射函数remap_pfn_range学习——示例分析(1)

    span::selection, .CodeMirror-line > span > span::selection { background: #d7d4f0; }.CodeMirror ...

  2. 内存映射函数remap_pfn_range学习——代码分析(3)

    li {list-style-type:decimal;}ol.wiz-list-level2 > li {list-style-type:lower-latin;}ol.wiz-list-le ...

  3. ROS_Kinetic_29 kamtoa simulation学习与示例分析(一)

    致谢源代码网址:https://github.com/Tutorgaming/kamtoa-simulation kamtoa simulation学习与示例分析(一) 源码学习与分析是学习ROS,包 ...

  4. 大数据下基于Tensorflow框架的深度学习示例教程

    近几年,信息时代的快速发展产生了海量数据,诞生了无数前沿的大数据技术与应用.在当今大数据时代的产业界,商业决策日益基于数据的分析作出.当数据膨胀到一定规模时,基于机器学习对海量复杂数据的分析更能产生较 ...

  5. JVM内存状况查看方法和分析工具

    Java本身提供了多种丰富的方法和工具来帮助开发人员查看和分析GC及JVM内存的状况,同时开源界和商业界也有一些工具可用于查看.分析GC及JVM内存的状况.通过这些分析,可以排查程序中内存泄露的问题及 ...

  6. zigbee学习:示例程序SampleApp中通讯流程

    zigbee学习:示例程序SampleApp中通讯流程 本文博客链接:http://blog.csdn.net/jdh99,作者:jdh,转载请注明. 参考链接: http://wjf88223.bl ...

  7. 【嵌入式开发】裸机引导操作系统和ARM 内存操作 ( DRAM SRAM 类型 简介 | Logical Bank | 内存地址空间介绍 | 内存芯片连接方式 | 内存初始化 | 汇编代码示例 )

    [嵌入式开发]ARM 内存操作 ( DRAM SRAM 类型 简介 | Logical Bank | 内存地址空间介绍 | 内存芯片连接方式 | 内存初始化 | 汇编代码示例 )     一. 内存 ...

  8. osg学习示例之遇到问题四骨骼动画编译osgCal

    osg学习示例之遇到问题四骨骼动画编译osgCal 转自:http://blog.csdn.net/wuwangrun/article/details/8239451 今天学到书<OpenSce ...

  9. 大并发连接的oracle在Linux下内存不足的问题的分析

    大并发连接的oracle在Linux下内存不足的问题的分析 2010-01-28 20:06:21 分类: Oracle 最近一台装有Rhel5.3的40G内存的机器上有一个oracle数据库,数据库 ...

随机推荐

  1. mac ssh 自动登陆设置

    1.首先找到.ssh目录 一般在用户名目录下. ls -a查看 如果没有就重新创建一个 chennan@bogon :mkdir .ssh chennan@bogon 查看当前的 bogon:.ssh ...

  2. js中parentNode,parentElement,childNodes,children

    首先了解parentNode,parentElement,childNodes,children四大属性之前,必须对Dom树有一定的了解,在Dom文档结构中,HTML页面每一部分都是由节点组成的,节点 ...

  3. ERP渠道文档管理(二十四)

    基本需求: 用例图: 存储过程: CREATE PROCEDURE [dbo].[BioErpCrmChannelDocument_ADD] @DocumentID int, @ChannelID i ...

  4. 【LOJ】#2071. 「JSOI2016」最佳团体

    题解 01分数规划,二分加树背包-- 代码 #include <bits/stdc++.h> #define enter putchar('\n') #define space putch ...

  5. [C编码笔记] 空串与NULL是不一样的

    int main() { char *str = NULL; printf("%p \n", str); printf("%p \n", &str); ...

  6. Django admin 产生'WSGIRequest' object has no attribute 'user'的错误

    Django admin 产生'WSGIRequest' object has no attribute 'user'的错误 django 版本1.8.升级到django2.0,   Django服务 ...

  7. Javascript数组Array的方法总结!

    1.join() 将数组的元素组成一个字符串,以分隔符连接,如果省略则默认逗号为分隔符,该方法只接收一个参数:分隔符.此方法不会改变原数组. let arr = [1,2,3,4] let arr1 ...

  8. Linux文件的所有权与权限

    要了解Linux的权限,需要和Linux的用户与组的概念一并理解,不了解的同学请参考Linux的用户和组 简介 在Linux中,每个文件除了有用户和组的信息以外,还有其对应的权限.可使用来查看. [r ...

  9. 【Ray Tracing in One Weekend 超详解】 光线追踪1-9 景深

    今天我们来学最后一章 Chapter11:Defocus Blur Preface 散焦模糊 也称 景深 首先,我们来了解一下散焦模糊,我们在真实相机中散焦模糊的原因是因为它们需要一个大圈(而不仅仅是 ...

  10. win7 配置DNS

    Network 右键 properties