BZOJ 2301 [HAOI2011]Problem b (分块 + 莫比乌斯反演)
2301: [HAOI2011]Problem b
Time Limit: 50 Sec Memory Limit: 256 MB
Submit: 6519 Solved: 3026
[Submit][Status][Discuss]
Description
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
Input
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数
Sample Input
2 5 1 5 1
1 5 1 5 2
Sample Output
3
HINT
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
Source
析:首先很容易看出来是莫比乌斯反演,但是直接用会TLE,因为有数据数组,总时间复杂度就是O(n^2),肯定会超时,所以要进行优化,因为在求答案的时候,对于每个G函数都要一个个来求,而G函数就是(m/i)*(n/i),m,n表示现最大的两个边界,在一段值内,它们的值是相等的,所以可以先求莫比乌斯函数的前缀和,进行优化,时间复杂度就大降低了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
//#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 5e4 + 10;
const int maxm = 3e5 + 10;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} bool vis[maxn];
int prime[maxn];
int mu[maxn]; void Moblus(){
mu[1] = 1;
int tot = 0;
for(int i = 2; i < maxn; ++i){
if(!vis[i]) prime[tot++] = i, mu[i] = -1;
for(int j = 0; j < tot; ++j){
if(i * prime[j] >= maxn) break;
vis[i*prime[j]] = 1;
if(i % prime[j] == 0){
mu[i*prime[j]] = 0;
break;
}
else mu[i*prime[j]] = -mu[i];
}
}
} int sum[maxn];
LL solve(int n, int m){
if(n > m) swap(n, m);
LL ans = 0;
for(int i = 1, det = 1; i <= n; i = det+1){
det = min(n/(n/i), m/(m/i));
ans += (LL)(sum[det] - sum[i-1]) * (n/i) * (m/i);
}
return ans;
} int main(){
Moblus();
for(int i = 1; i < maxn; ++i) sum[i] = sum[i-1] + mu[i];
int T; cin >> T;
while(T--){
int a, b, c, d, k;
scanf("%d %d %d %d %d", &a, &b, &c, &d, &k);
LL ans = solve(b/k, d/k) - solve((a-1)/k, d/k) - solve((c-1)/k, b/k) + solve((a-1)/k, (c-1)/k);
printf("%lld\n", ans);
}
return 0;
}
BZOJ 2301 [HAOI2011]Problem b (分块 + 莫比乌斯反演)的更多相关文章
- BZOJ 2301: [HAOI2011]Problem b (莫比乌斯反演)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 436 Solved: 187[Submit][S ...
- 2301: [HAOI2011]Problem b ( 分块+莫比乌斯反演+容斥)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 6015 Solved: 2741[Submit] ...
- bzoj 2301 [HAOI2011]Problem b(莫比乌斯反演+分块优化)
题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000, ...
- bzoj 2301 [HAOI2011]Problem b(莫比乌斯反演)
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][ ...
- bzoj 2301: [HAOI2011]Problem b
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...
- BZOJ 2301: [HAOI2011]Problem b( 数论 )
和POI某道题是一样的... http://www.cnblogs.com/JSZX11556/p/4686674.html 只需要二维差分一下就行了. 时间复杂度O(MAXN + N^1.5) - ...
- 【BZOJ】2301: [HAOI2011]Problem b(莫比乌斯+分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 和这题不是差不多的嘛--[BZOJ]1101: [POI2007]Zap(莫比乌斯+分块) 唯 ...
随机推荐
- Django的rest_framework的视图之Mixin类编写视图源码解析
Mixin类编写视图 我们这里用auther表来做演示,先为auther和autherdetail写2个url url(r'^autherdetail/(?P<id>\d+)', view ...
- NET Runtime version 2.0.50727.42 - 执行引擎错误 或者无法创建应用程序域
server2003操作系统 IIS运行应用程序报错,应用程序事件查看器详细: NET Runtime version 2.0.50727.42 - 执行引擎错误 或者无法创建应用程序域 解决方法:卸 ...
- MVC学习(三)Code-First Demo
前面两篇文章介绍了DataBase-First例子,这里就介绍Code-First. 个人简单理解:就是在程序中编写代码,然后在数据库中生成相应的表.字段.约束等等.听上去蛮神奇的.Now,begin ...
- 统计sql
查询统计信息 select * from user_tab_statistics t where t.TABLE_NAME=upper('tablename'); 查询表基本信息 select * f ...
- 什么是MVVM模式
问题引入1 场景一:团队辛辛苦苦完成了一个项目,抱着激动的心情去给用户做demo,而用户给你的反馈是UI很不满意,要重新修改,否则拒绝验收.大规模修改UI,晴天霹雳!2 场景二:产品在一家客户上线运行 ...
- [最新原创电子书]lazarus开发者入门及中级教程
目前市面上没有任何一本完整的书,介绍Lazarus,Firebird这两个优秀的开发工具,同时还有一个作为他们之间桥梁的开发套件ZeosDBO,也没有任何完整的中文开发指南,本书以这三种开发套件为主线 ...
- Tomcat的目录结构及部署应用程序
下载好的二进制的Tomcat,解压会看到7个目录,如下: bin 目录:Tomcat的脚本存放目录,如启动.关闭脚本等.其中 **.bat用于windows平台,**.sh用于Linux平台 conf ...
- DataTable表连接
public static System.Data.DataTable TableJoin(System.Data.DataTable dt, System.Data.DataTable dtDeta ...
- maven-javadoc-plugin 出现错误Unsupported major.minor version 51.0
[INFO] --- maven-javadoc-plugin:3.0.0:jar (attach-javadocs) @ eii-frame-sms ---[WARNING] Error injec ...
- ListView 删除item删除不了的问题解决办法
下面的方法是删除不了item的: Integer pos = Integer.valueOf(msg.getBody().toString()); adapter.getList().remove(p ...