首先上(下)三角矩阵乘以上(下)三角矩阵结果还是上(下)三角矩阵,

另外我们考虑相乘后的对角元素可发现,对角原始是原来2矩阵对应对角元素的乘积。

另外对角线都是1的上(下)三角矩阵必定可以只是用行运算III化为单位矩阵。

行运算III 对应左乘第3类初等矩阵,因此U1^-1(L2^-1) 可以看成是一系列 第三类(并且是上(下)三角初等矩阵的乘积)

由于这些初等矩阵对角元素都是1,所以相乘后的U1^-1(L2^2-1)其对角元素也是1.

上面根据方程  左是下三角,右是上三角,两边如果要相等,必须是同时是对角的。

U2U1^-1 必定是上三角,其对角元素是1,如果是对角的那么必定是单位矩阵。

L2^-1 L1的判断思路一样。

证明LDU分解的唯一性的更多相关文章

  1. 非负矩阵分解NMF

    http://blog.csdn.net/pipisorry/article/details/52098864 非负矩阵分解(NMF,Non-negative matrix factorization ...

  2. 【译】N 皇后问题 – 构造法原理与证明 时间复杂度O(1)

    [原] E.J.Hoffman; J.C.Loessi; R.C.Moore The Johns Hopkins University Applied Physics Laboratory *[译]* ...

  3. 一些对数学领域及数学研究的个人看法(转载自博士论坛wcboy)

    转自:http://www.math.org.cn/forum.php?mod=viewthread&tid=14819&extra=&page=1 原作者: wcboy 现在 ...

  4. [问题2014S13] 解答

    [问题2014S13]  解答 (1) 先证必要性:若 \(A=LU\) 是 非异阵 \(A\) 的 \(LU\) 分解,则 \(L\) 是主对角元全部等于 1 的下三角阵,\(U\) 是主对角元全部 ...

  5. [物理学与PDEs]书中一些对数学研究有用的引理

    P 35--38 1.  若 ${\bf B}$ 为横场 ($\Div{\bf B}=0\ra {\bf k}\cdot {\bf B}=0\ra $ 波的振动方向与传播方向平行), 则 $$\bex ...

  6. RLS自适应滤波器中用矩阵求逆引理来避免求逆运算

    在RLS自适应滤波器的实现过程中,难免不涉及矩阵的求逆运算.而求逆操作双是非常耗时的,一个很自然的想法就是尽可能的避免直接对矩阵进行求逆运算.那么,在RLS自适应滤波器的实现中,有没有一种方法能避免直 ...

  7. [学习笔记&教程] 信号, 集合, 多项式, 以及各种卷积性变换 (FFT,NTT,FWT,FMT)

    目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理 ...

  8. 清明 DAY2

    数论 数论是研究整数性质的东西 也就是 lim   π(x)=x/ ln x (x->无穷) 证明: ∵ p|ab ∴ ab有因子p 设 a=p1k1p2k2......prkr      b= ...

  9. SX学SX内容 笔记?

    某帖子笔记1 主要还是从三体吧某精品贴里看来的... 集合论 集合就是一堆东西...满足 1) 集合中的元素互异(即每种只有一个) 2) 集合中的元素无序(不是一个数组,集合中的元素没有显然的排序法则 ...

随机推荐

  1. http://www.rabbitmq.com/documentation.html

    http://www.rabbitmq.com/documentation.html https://www.gitbook.com/book/geewu/rabbitmq-quick/details

  2. HDU 1754 I Hate It(线段树区间查询,单点更新)

    描述 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少. 这让很多学生很反感.不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问.当然,老 ...

  3. c#: UrlDecode()

    1.源起: KV需要解析从插件传来的URL网址,因为其可能经过编码,所以需要解码. 初用System.Web.HttpUtility.UrlDecode()这个函数,但根据用户环境crash场景,发现 ...

  4. git web找不到new project解决方法

    group->选一个project->new project This is a annoying for two reasons: users might not understand ...

  5. thymeleaf 格式化时间

    运用Thymeleaf模板后,前台的时间显示发生变化,和数据库不一致 HTML页面中格式如下: <td th:text="${fleeceRecord.cashmereDate}&qu ...

  6. 关于PHP程序员技术职业生涯规划 2017年3月5日韩 天峰

    看到很多PHP程序员职业规划的文章,都是直接上来就提Linux.PHP.MySQL.Nginx.Redis.Memcache.jQuery这些,然后就直接上手搭环境.做项目,中级就是学习各种PHP框架 ...

  7. Jenkins与Git持续集成&&Linux上远程部署Java项目

    一.环境搭建 1.安装所需软件 Jdk Maven Jenkins Tomcat Xshell git 以上软件去官网下载,比较简单,不一一描述了 2.安装所需的jenkins插件 Git plugi ...

  8. ubuntu上mongodb的安装

    Ubuntu上安装MongoDB的完全步骤以及注意事项 本文我们详细介绍了Ubuntu上安装MongoDB的全部过程,希望本次的介绍能够对您有所帮助. AD: 2013大数据全球技术峰会课程PPT下载 ...

  9. Zookeeper简介与使用

    1.   Zookeeper概念简介: Zookeeper是一个分布式协调服务:就是为用户的分布式应用程序提供协调服务 A.zookeeper是为别的分布式程序服务的 B.Zookeeper本身就是一 ...

  10. C#泛型的学习

    编码: class Program { static void Main(string[] args) { ; Test<int> test1 = new Test<int>( ...