Spatial Pyramid Matching

看了很多关于SPM的介绍,但是网络上的资源大多都是对论文Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories的直接翻译,关于自己的理解谈得很少。这里主要写一下在我看了SPM论文和其提供的代码之后的感想。

SPM,一般中文翻译为空间金字塔,主要是计算机视觉中对图片的一种特征提取的方式. SPM的主要思想为:将图像分成若干块(sub-regions),分别统计每一子块的特征,最后将所有块的特征 拼接起来,形成完整的特征。这就是SPM中的Spatial。在分块的细节上,作者采用了一种多尺度的分块方法,即分块的粒度越大越细 (increasingly fine),呈现出一种层次金字塔的结构,这就是SPM中的Pyramid。

如果细心分析代码那么可以看到,代码主要分为4步来完成,分别对应一个function。

  1. GenerateSiftDescriptors:

该函数主要是来产生Sift特征,主要需要注意的是它将每一张图片分为了多个patch,这样对每个patch计算Sift特征,最后得到一个多维特征向量。在作者提供的Example中,一张图片480*640,那么对于16*16的patch,gridspacing为8,grid数量为(480/8-1)*(640/8-1)=4661那么可以得到的sift特征数量为4661,每个特征维度为128.

  1. CalculateDictionary

该函数很简单,就是将刚得到的特征用k-means的方法找到指定size的字典,这里指定的字典size=200或400.那么后面的每张图片的每个sift特征就可以用该字典来表示了,直接去字典里面找和该sift特征最接近的word,直接用index来表示,这个可以用sp_dist2函数来实现。这里注意的是:字典是一个200*128的矩阵,也就是每一行代表着一个k-mean得到的中心sift特征。这个可以在Example跑完后的data文件夹下的dictionary_size(200或400).mat中看到。

  1. BuildHistograms

该函数在论文里面是没有提到的,它的主要功能在于将每张图片得到的特征(该特征存放在imagename_sift.mat文件中,矩阵为4661*128)转化为texton,该词的翻译为基元,也就是将每张图片中的每个grid产生的sift特征在字典中给对应起来得到一个4661*1的矩阵,该矩阵存放在imagename_texton_ind_size(200).mat文件中。

  1. CompilePyramid

该函数是最后一步,也就是计算金字塔的步骤,在该函数中将图片按level来进行划分,也就是论文里面的那个图(如下),分了3层,层数l越大,则划分得越细,论文中有句话“More specifically, let us construct a sequence of grids

at resolutions 0, . . . , L, such that the grid at level l has 2 ^(l) cells along each dimension, for a total of D = 2^(dl) cells. ”,实际上意思是对于每层划分,

将图片按照行列的维度进行划分,l=2,则每行没列都做2^2=4个划分,也就是下图最右所示,则所有的cells也就是2^(2*2)=16,这里d=2,对于level l=0,1都是一样道理。做了这样的划分之后,首先计算的是划分最细的特征直方图,这里指的是level 2。那么这里对原图做了16patch的划分,然后计算刚才得到的texton中落在每个patch中的特征sift在词典中的index,多个sift所以形成了一个由index组合的向量,然后计算直方图,这里用hist函数来计算,主要是将词典中每个词也就是每个sift的index在刚得到的向量里面出现的次数得到一个直方图,该直方图是200维。那么对于16个patch都重复计算,最后得到的就是16个200维的直方图特征,所以对于level 2层最后将这些直方图连在一起,就是16*200维。

根据level 2的计算对level 1 ,0重复计算,不过由于粗粒度的特征计算包含了细粒度的计算,所以直接用level 2的计算结果就可以了,这部分代码比较简单,直接看代码就可以了。不过需要注意的是在代码中pyramid_cell这个变量的第一个cell实际上存放的是level 2的特征,是倒过来的。也就是pyramid_cell{1}存放4*4*200,pyramid_cell{2}存放的则是2*2*200,pyradmid{3}存放的则是1*1*200.

最后还有一步就是加权求整张图片级别的特征,这里的思想主要是细粒度的权重大,粗粒度的权重小,这里系数给的是2^(-l)(代码里给的,实际上对应论文里面的,这里l=1,2,3,刚好对应论文里面的2^(-(L-l))),不过这里需要注意的是对于l=3,权重系数为1-(1/2+1/4)=1/4,这是为了归一化。用该系数乘上每个patch得到的直方图特征,

将它们按照细粒度在前,粗粒度在后的顺序连在一起,形成一个4*4*200+2*2*200+1*1*200=4200维度的特征,这对应论文里面,这就是最后图片的特征描述。由于按照level来对图片进行划分,形成一个金字塔结构,所以叫空间金子塔结构。

  1. 最后

在论文里面还提到一些公式,如下

这几个公式主要用来估计相似度的,可以想象为给定两张图片,根据得到的Spm特征进行相似度估计,可以用欧式距离,这里给出了金字塔模型中的相似度估计方法。具体的做法在hist_isect函数中。在(1)中,该函数是一个直方图交集函数(histogram intersection function),对于每个grid产生的200维的直方图,也就是该grid中sift特征落在词典中每个bin的数量,对每个bin中的数量进行比较对小的求和,这就是直方图交集函数。实际代码中,就是先将一个直方图的等于0部分去掉也就是

nonzero_ind = find(x1(p,:)>0);

tmp_x1 = repmat(x1(p,nonzero_ind), [n 1]);

找到大于0部分的,(因为等于0的bin肯定是小的,加和没有意义,直接处理大于0部分就行),然后比较对应部分较小值求和就好。

K(p,:) = sum(min(tmp_x1,x2(:,nonzero_ind)),2)';

spm的更多相关文章

  1. 163邮箱问题:554 DT:SPM 163 smtp5,D9GowACHO7RNWNdXmXs1Bw--.9035S2

    最近公司需要开发一个自定义邮箱功能,上网查询一下,利用163邮箱发送邮件. 由于163 的反垃圾机制,(坑爹机制.) 一般出现 554有在1)测试中用了test,测试,关键字在主题或者内容里面. 但是 ...

  2. 折腾一两天,终于学会使用grunt压缩合并混淆JS脚本,小激动,特意记录一下+spm一点意外收获

    很长时间没有更新博客了,实在是太忙啦...0.0 ,以下的东西纯粹是记录,不是我原创,放到收藏夹还担心不够,这个以后常用,想来想去,还是放到这里吧,,丢不了..最后一句废话,网上搜集也好原创也罢,能解 ...

  3. https://yq.aliyun.com/articles/65125?spm=5176.100240.searchblog.18.afqQoU

    https://yq.aliyun.com/articles/65125?spm=5176.100240.searchblog.18.afqQoU

  4. 利用SPM工具运行自己创建的小组件(使用common-model向后台接口请求数据)

    步骤如下: 1.安装依赖:spm install -e 2.编译:spm build (编译好的东西会放在trunk-dist里面) 3.发布:spm app -d (会出来一个export端口,一般 ...

  5. 使用SPM创建新组件

    (前提:已经安装好了spm) 步骤如下:

  6. notes:spm多重比较校正

    SPM做完统计后,statistical table中的FDRc实际上是在该p-uncorrected下,可以令FDR-correcred p<=0.05的最小cluster中的voxel数目: ...

  7. GLM in SPM

    主要记一句话: SPM的GLM模型中的β,指的是相应regressor对最后测量得到的信号所产生的效应(effect). 后续的假设检验过程实际上都是对各个regressor的β向量进行的. The ...

  8. SPM FDR校正

    来源: http://blog.sciencenet.cn/blog-479412-572049.html,http://52brain.com/thread-15512-1-1.html SPM8允 ...

  9. SPM - data analysis

    来源: SPM基本原理与使用PPT, 北师大,朱朝喆研究员,http://www.cnblogs.com/haore147/p/3633515.html ❤ First-level analysis: ...

  10. SPM paired t-test步骤

    首先感谢大神空里流霜耐心的讲解,这篇笔记内容主要是整理他的谆谆教导,虽然他也看不到>< 所有数据都要经过平滑. Paired t-test虽然在2nd-level analysis中,但是 ...

随机推荐

  1. #个人博客作业Week1——浏览教材后提出的5个问题

    1.对于MSF的团队模型,请问是团队中的哪个角色监督9项原则的实现?是否会浪费时间和精力在践行9项原则上?2.在调查用户需求和用户体验时如何让不同阶层的用户更多的参与度?3.想成为一位优秀的PM需要从 ...

  2. 《Linux内核分析》--扒开系统调用的三层皮 20135311傅冬菁

    扒开系统调用的三层皮           20135311傅冬菁 一.内容分析 寄存器上下文(从用户态切换到内核态) 中断/int指令会在堆栈上保存一些寄存器的值(用户态栈顶地址..当时的状态字.当下 ...

  3. 项目复审——Beta阶段

    排名原则还是基于这个组到底自己做了多少东西,又借鉴了多少东西,不过其他组的具体情况我也不一定说的清楚,所以只是通过大家的码云和一些了解来评判的.当然,是否发布也是一个重要指标.顺便感叹一句,现在的云平 ...

  4. 团队作业5——英语学习/词典App行业Top5

    来自权威研究机构易观智库的最新数据表明,国内几家主流词典类App市场的份额占比差异化分布进一步加剧. 对于156万安卓移动端活跃数字消费者的移动互联网行为监测结果显示,截至2014年8月底,有道词典A ...

  5. Node.js使用UDP通讯

    Node.js 的 dgram 模块可以方便的创建udp服务,,以下是使用 dgram模块创建的udp服务和客户端的一个简单例子. 一.创建 UDP Server var dgram = requir ...

  6. Java设计模式之代理模式(静态代理和JDK、CGLib动态代理)以及应用场景

    我做了个例子 ,需要可以下载源码:代理模式 1.前言: Spring 的AOP 面向切面编程,是通过动态代理实现的, 由两部分组成:(a) 如果有接口的话 通过 JDK 接口级别的代理 (b) 如果没 ...

  7. Java微信二次开发(一)

    准备用Java做一个微信二次开发项目,把流程写在这里吧. 第一天,做微信请求验证 需要导入库:servlet-api.jar 第一步:新建包com.wtz.service,新建类LoginServle ...

  8. 通信对象 System.ServiceModel.Channels.ServiceChannel 无法用于通信,因为其处于“出错”状态。

    通信对象 System.ServiceModel.Channels.ServiceChannel 无法用于通信,因为其处于“出错”状态. 在 System.ServiceModel.Channels. ...

  9. POJ2125 Destroying The Graph

    题目链接:ヾ(≧∇≦*)ゝ 大致题意: 给出一个有向图D=(V,E).对于每个点U,定义两种操作a(u),b(u) 操作a(u):删除点U的所有出边,即属于E,操作花费为Ca(u). 操作b(u):删 ...

  10. 【题解】 bzoj4472: [Jsoi2015]salesman (动态规划)

    bzoj4472,懒得复制,戳我戳我 Solution: 题面意思:从\(1\)号节点出发,每到一个节点就必须停下,获得节点权值(每个节点只会获得一次),每个点有个规定的停留次数,求最大可获得多大权值 ...