HDU2389(KB10-F 二分图最大匹配Hopcroft_Karp)
Rain on your Parade
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 655350/165535 K (Java/Others)
Total Submission(s): 4728 Accepted Submission(s): 1552
Problem Description
But nothing ever is perfect. One of your guests works in weather forecasting. He suddenly yells, “I know that breeze! It means its going to rain heavily in just a few minutes!” Your guests all wear their best dresses and really would not like to get wet, hence they stand terrified when hearing the bad news.
You have prepared a few umbrellas which can protect a few of your guests. The umbrellas are small, and since your guests are all slightly snobbish, no guest will share an umbrella with other guests. The umbrellas are spread across your (gigantic) garden, just like your guests. To complicate matters even more, some of your guests can’t run as fast as the others.
Can you help your guests so that as many as possible find an umbrella before it starts to pour?
Given the positions and speeds of all your guests, the positions of the umbrellas, and the time until it starts to rain, find out how many of your guests can at most reach an umbrella. Two guests do not want to share an umbrella, however.
Input
Each test case starts with a line containing the time t in minutes until it will start to rain (1 <=t <= 5). The next line contains the number of guests m (1 <= m <= 3000), followed by m lines containing x- and y-coordinates as well as the speed si in units per minute (1 <= si <= 3000) of the guest as integers, separated by spaces. After the guests, a single line contains n (1 <= n <= 3000), the number of umbrellas, followed by n lines containing the integer coordinates of each umbrella, separated by a space.
The absolute value of all coordinates is less than 10000.
Output
Sample Input
1
2
1 0 3
3 0 3
2
4 0
6 0
1
2
1 1 2
3 3 2
2
2 2
4 4
Sample Output
2
Scenario #2:
2
Source
//2017-08-26
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue> using namespace std; const int N = ;
const int M = ;
const int INF = 0x3f3f3f3f;
int head[N], tot;
struct Edge{
int to, next;
}edge[M]; void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} //xlink[i]表示左集合顶点i匹配的右集合的点,ylink[i]表示右集合顶点i匹配的左集合的点
int xlink[N], ylink[N];
//xlevel[i]表示左集合顶点i的所在层数,ylevel[i]表示右集合顶点i的所在层数
int xlevel[N], ylevel[N];
bool vis[N];
struct Hopcroft_Karp{
int dis, xn, yn;//xn表示左集合顶点个数,yn表示右集合顶点个数
void init(int _xn, int _yn){
tot = ;
xn = _xn;
yn = _yn;
memset(head, -, sizeof(head));
memset(xlink, -, sizeof(xlink));
memset(ylink, -, sizeof(ylink));
}
bool bfs(){
queue<int> que;
dis = INF;
memset(xlevel, -, sizeof(xlevel));
memset(ylevel, -, sizeof(ylevel));
for(int i = ; i < xn; i++)
if(xlink[i] == -){
que.push(i);
xlevel[i] = ;
}
while(!que.empty()){
int u = que.front();
que.pop();
if(xlevel[u] > dis)break;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(ylevel[v] == -){
ylevel[v] = xlevel[u] + ;
if(ylink[v] == -)
dis = ylevel[v];
else{
xlevel[ylink[v]] = ylevel[v]+;
que.push(ylink[v]);
}
}
}
}
return dis != INF;
}
int dfs(int u){
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!vis[v] && ylevel[v] == xlevel[u]+){
vis[v] = ;
if(ylink[v] != - && ylevel[v] == dis)
continue;
if(ylink[v] == - || dfs(ylink[v])){
xlink[u] = v;
ylink[v] = u;
return ;
}
}
}
return ;
}
//二分图最大匹配
//input:建好的二分图
//output:ans 最大匹配数
int max_match(){
int ans = ;
while(bfs()){
memset(vis, , sizeof(vis));
for(int i = ; i < xn; i++)
if(xlink[i] == -)
ans += dfs(i);
}
return ans;
}
}hk_match; int n, m, pour_time;
struct Guests{
int x, y, speed;
}guests[N]; struct Umbrella{
int x, y;
}umbrella[N]; bool getUmbrella(int i, int j){
return (guests[i].x-umbrella[j].x)*(guests[i].x-umbrella[j].x)
+ (guests[i].y-umbrella[j].y)*(guests[i].y-umbrella[j].y)
<= guests[i].speed*guests[i].speed*pour_time*pour_time;
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputF.txt", "r", stdin);
int T, kase = ;
cin>>T;
while(T--){
cin>>pour_time>>m;
for(int i = ; i < m; i++)
cin>>guests[i].x>>guests[i].y>>guests[i].speed;
cin>>n;
for(int i = ; i < n; i++)
cin>>umbrella[i].x>>umbrella[i].y;
hk_match.init(m, n);
for(int i = ; i < m; i++)
for(int j = ; j < n; j++)
if(getUmbrella(i, j))
add_edge(i, j);
cout<<"Scenario #"<<++kase<<":"<<endl<<hk_match.max_match()<<endl<<endl;
} return ;
}
HDU2389(KB10-F 二分图最大匹配Hopcroft_Karp)的更多相关文章
- HDU2389 Rain on your Parade —— 二分图最大匹配 HK算法
题目链接:https://vjudge.net/problem/HDU-2389 Rain on your Parade Time Limit: 6000/3000 MS (Java/Others) ...
- [HDU] 2063 过山车(二分图最大匹配)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=2063 女生为X集合,男生为Y集合,求二分图最大匹配数即可. #include<cstdio> ...
- [POJ] 1274 The Perfect Stall(二分图最大匹配)
题目地址:http://poj.org/problem?id=1274 把每个奶牛ci向它喜欢的畜栏vi连边建图.那么求最大安排数就变成求二分图最大匹配数. #include<cstdio> ...
- 二分图最大匹配:匈牙利算法的python实现
二分图匹配是很常见的算法问题,一般用匈牙利算法解决二分图最大匹配问题,但是目前网上绝大多数都是C/C++实现版本,没有python版本,于是就用python实现了一下深度优先的匈牙利算法,本文使用的是 ...
- bzoj 1854: [Scoi2010]游戏 (并查集||二分图最大匹配)
链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1854 写法1: 二分图最大匹配 思路: 将武器的属性对武器编号建边,因为只有10000种 ...
- 二分图最大匹配|UOJ#78|匈牙利算法|边表|Elena
#78. 二分图最大匹配 从前一个和谐的班级,有 nlnl 个是男生,有 nrnr 个是女生.编号分别为 1,…,nl1,…,nl 和 1,…,nr1,…,nr. 有若干个这样的条件:第 vv 个男生 ...
- HDU 1045 - Fire Net - [DFS][二分图最大匹配][匈牙利算法模板][最大流求二分图最大匹配]
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1045 Time Limit: 2000/1000 MS (Java/Others) Mem ...
- 【二分】【字符串哈希】【二分图最大匹配】【最大流】XVII Open Cup named after E.V. Pankratiev Stage 14, Grand Prix of Tatarstan, Sunday, April 2, 2017 Problem I. Minimum Prefix
给你n个字符串,问你最小的长度的前缀,使得每个字符串任意循环滑动之后,这些前缀都两两不同. 二分答案mid之后,将每个字符串长度为mid的循环子串都哈希出来,相当于对每个字符串,找一个与其他字符串所选 ...
- 【bzoj2044】三维导弹拦截 dp+二分图最大匹配
题目描述 n个物品,第i个位置有ai.bi.ci三种属性.每次可以选出满足$\ a_{p_i}<a_{p_{i+1}}\ ,\ b_{p_i}<b_{p_{i+1}}\ ,\ c_{p_i ...
随机推荐
- Spring 扫描标签<context:component-scan/>
一. <context:annotation-config/> 此标签支持一些注入属性的注解, 列如:@Autowired, @Resource注解 二. <context:comp ...
- QQ gtk,bkn算法
public long GetGTK(string sKey) { ; , len = sKey.Length; i < len; ++i) { hash += (hash << ) ...
- easyui datebox 只选择月份的方法
easyui datebox 只选择月份的方法 效果如下图: 代码如下: <html > <head> <meta charset="utf-8"&g ...
- Parallel Gradient Boosting Decision Trees
本文转载自:链接 Highlights Three different methods for parallel gradient boosting decision trees. My algori ...
- CentOS-6.6安装配置Tomcat-7
安装说明 安装环境:CentOS-6.3安装方式:源码安装 软件:apache-tomcat-7.0.29.tar.gz下载地址:http://tomcat.apache.org/download-7 ...
- Linux下安装Nginx详细图解教程 (nginx-1.2.6)
什么是Nginx? Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器,在高连接并发的情况下N ...
- sql字符处理
--Description: 字符处理 --使用: 放到查询分析器里执行就可以了 --示例: select * from dbo.splitstr('12 44 45 50 56 87',' ') o ...
- C#基础篇四数组
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace P01A ...
- css3实现流星坠落效果
html代码 <div class="star"></div> <div class="star pink"></di ...
- [Java初探外篇]__关于时间复杂度与空间复杂度
前言 我们在前面的排序算法的学习中了解到了,排序算法的分类,效率的比较所使用到的判断标准,就包括时间复杂度和空间复杂度,当时因为这两个定义还是比较难以理解的,所以决定单独开一篇文章,记录一下学习的过程 ...