HDU2389(KB10-F 二分图最大匹配Hopcroft_Karp)
Rain on your Parade
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 655350/165535 K (Java/Others)
Total Submission(s): 4728 Accepted Submission(s): 1552
Problem Description
But nothing ever is perfect. One of your guests works in weather forecasting. He suddenly yells, “I know that breeze! It means its going to rain heavily in just a few minutes!” Your guests all wear their best dresses and really would not like to get wet, hence they stand terrified when hearing the bad news.
You have prepared a few umbrellas which can protect a few of your guests. The umbrellas are small, and since your guests are all slightly snobbish, no guest will share an umbrella with other guests. The umbrellas are spread across your (gigantic) garden, just like your guests. To complicate matters even more, some of your guests can’t run as fast as the others.
Can you help your guests so that as many as possible find an umbrella before it starts to pour?
Given the positions and speeds of all your guests, the positions of the umbrellas, and the time until it starts to rain, find out how many of your guests can at most reach an umbrella. Two guests do not want to share an umbrella, however.
Input
Each test case starts with a line containing the time t in minutes until it will start to rain (1 <=t <= 5). The next line contains the number of guests m (1 <= m <= 3000), followed by m lines containing x- and y-coordinates as well as the speed si in units per minute (1 <= si <= 3000) of the guest as integers, separated by spaces. After the guests, a single line contains n (1 <= n <= 3000), the number of umbrellas, followed by n lines containing the integer coordinates of each umbrella, separated by a space.
The absolute value of all coordinates is less than 10000.
Output
Sample Input
1
2
1 0 3
3 0 3
2
4 0
6 0
1
2
1 1 2
3 3 2
2
2 2
4 4
Sample Output
2
Scenario #2:
2
Source
//2017-08-26
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue> using namespace std; const int N = ;
const int M = ;
const int INF = 0x3f3f3f3f;
int head[N], tot;
struct Edge{
int to, next;
}edge[M]; void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} //xlink[i]表示左集合顶点i匹配的右集合的点,ylink[i]表示右集合顶点i匹配的左集合的点
int xlink[N], ylink[N];
//xlevel[i]表示左集合顶点i的所在层数,ylevel[i]表示右集合顶点i的所在层数
int xlevel[N], ylevel[N];
bool vis[N];
struct Hopcroft_Karp{
int dis, xn, yn;//xn表示左集合顶点个数,yn表示右集合顶点个数
void init(int _xn, int _yn){
tot = ;
xn = _xn;
yn = _yn;
memset(head, -, sizeof(head));
memset(xlink, -, sizeof(xlink));
memset(ylink, -, sizeof(ylink));
}
bool bfs(){
queue<int> que;
dis = INF;
memset(xlevel, -, sizeof(xlevel));
memset(ylevel, -, sizeof(ylevel));
for(int i = ; i < xn; i++)
if(xlink[i] == -){
que.push(i);
xlevel[i] = ;
}
while(!que.empty()){
int u = que.front();
que.pop();
if(xlevel[u] > dis)break;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(ylevel[v] == -){
ylevel[v] = xlevel[u] + ;
if(ylink[v] == -)
dis = ylevel[v];
else{
xlevel[ylink[v]] = ylevel[v]+;
que.push(ylink[v]);
}
}
}
}
return dis != INF;
}
int dfs(int u){
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!vis[v] && ylevel[v] == xlevel[u]+){
vis[v] = ;
if(ylink[v] != - && ylevel[v] == dis)
continue;
if(ylink[v] == - || dfs(ylink[v])){
xlink[u] = v;
ylink[v] = u;
return ;
}
}
}
return ;
}
//二分图最大匹配
//input:建好的二分图
//output:ans 最大匹配数
int max_match(){
int ans = ;
while(bfs()){
memset(vis, , sizeof(vis));
for(int i = ; i < xn; i++)
if(xlink[i] == -)
ans += dfs(i);
}
return ans;
}
}hk_match; int n, m, pour_time;
struct Guests{
int x, y, speed;
}guests[N]; struct Umbrella{
int x, y;
}umbrella[N]; bool getUmbrella(int i, int j){
return (guests[i].x-umbrella[j].x)*(guests[i].x-umbrella[j].x)
+ (guests[i].y-umbrella[j].y)*(guests[i].y-umbrella[j].y)
<= guests[i].speed*guests[i].speed*pour_time*pour_time;
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputF.txt", "r", stdin);
int T, kase = ;
cin>>T;
while(T--){
cin>>pour_time>>m;
for(int i = ; i < m; i++)
cin>>guests[i].x>>guests[i].y>>guests[i].speed;
cin>>n;
for(int i = ; i < n; i++)
cin>>umbrella[i].x>>umbrella[i].y;
hk_match.init(m, n);
for(int i = ; i < m; i++)
for(int j = ; j < n; j++)
if(getUmbrella(i, j))
add_edge(i, j);
cout<<"Scenario #"<<++kase<<":"<<endl<<hk_match.max_match()<<endl<<endl;
} return ;
}
HDU2389(KB10-F 二分图最大匹配Hopcroft_Karp)的更多相关文章
- HDU2389 Rain on your Parade —— 二分图最大匹配 HK算法
题目链接:https://vjudge.net/problem/HDU-2389 Rain on your Parade Time Limit: 6000/3000 MS (Java/Others) ...
- [HDU] 2063 过山车(二分图最大匹配)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=2063 女生为X集合,男生为Y集合,求二分图最大匹配数即可. #include<cstdio> ...
- [POJ] 1274 The Perfect Stall(二分图最大匹配)
题目地址:http://poj.org/problem?id=1274 把每个奶牛ci向它喜欢的畜栏vi连边建图.那么求最大安排数就变成求二分图最大匹配数. #include<cstdio> ...
- 二分图最大匹配:匈牙利算法的python实现
二分图匹配是很常见的算法问题,一般用匈牙利算法解决二分图最大匹配问题,但是目前网上绝大多数都是C/C++实现版本,没有python版本,于是就用python实现了一下深度优先的匈牙利算法,本文使用的是 ...
- bzoj 1854: [Scoi2010]游戏 (并查集||二分图最大匹配)
链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1854 写法1: 二分图最大匹配 思路: 将武器的属性对武器编号建边,因为只有10000种 ...
- 二分图最大匹配|UOJ#78|匈牙利算法|边表|Elena
#78. 二分图最大匹配 从前一个和谐的班级,有 nlnl 个是男生,有 nrnr 个是女生.编号分别为 1,…,nl1,…,nl 和 1,…,nr1,…,nr. 有若干个这样的条件:第 vv 个男生 ...
- HDU 1045 - Fire Net - [DFS][二分图最大匹配][匈牙利算法模板][最大流求二分图最大匹配]
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1045 Time Limit: 2000/1000 MS (Java/Others) Mem ...
- 【二分】【字符串哈希】【二分图最大匹配】【最大流】XVII Open Cup named after E.V. Pankratiev Stage 14, Grand Prix of Tatarstan, Sunday, April 2, 2017 Problem I. Minimum Prefix
给你n个字符串,问你最小的长度的前缀,使得每个字符串任意循环滑动之后,这些前缀都两两不同. 二分答案mid之后,将每个字符串长度为mid的循环子串都哈希出来,相当于对每个字符串,找一个与其他字符串所选 ...
- 【bzoj2044】三维导弹拦截 dp+二分图最大匹配
题目描述 n个物品,第i个位置有ai.bi.ci三种属性.每次可以选出满足$\ a_{p_i}<a_{p_{i+1}}\ ,\ b_{p_i}<b_{p_{i+1}}\ ,\ c_{p_i ...
随机推荐
- Distinct Substrings(spoj694)(sam(后缀自动机)||sa(后缀数组))
Given a string, we need to find the total number of its distinct substrings. Input \(T-\) number of ...
- Tomcat在Linux下的安装
按部就班的把 tomcat 上传到 Linux 我创建了一个文件夹用作存放解压文件 ( tomcat只要解压就可以使用 ) 解压 : tar -xvf apache-tomcat-7.0.52.t ...
- redis集成相关工具类
package cn.yiyuan.util; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; i ...
- opencv2函数学习之erode、dilate:图像腐蚀和膨胀
图像腐蚀和图像膨胀是图像中两种最基本形态学操作. ,-), ,int borderType=BORDER_CONSTANT, const Scalar& borderValue=morphol ...
- mac下安装rzsz
1.先安装item2,item2 市类似mac风格的终端 item2 下载地址,http://iterm2.com/downloads.html,下载后解压缩就能运行 2.Install Homebr ...
- ElasticSearch入门3: Spring Boot集成ElasticSearch
第一步:创建项目elasticsearch 编写pom文件 <?xml version="1.0" encoding="UTF-8"?> <p ...
- Entity framework 预热
Entity framework 预热 对于在应用程序中定义的每个DbContext类型,在首次使用时,Entity Framework都会根据数据库中的信息在内存生成一个映射视图(mapping ...
- CSS动画原理及硬件加速
一.图层 图层即层叠上下文,具体概念和应用大家可以看我之前转自张鑫旭大神博客的<CSS层叠上下文和层叠顺序>,这里我们简单复习一下产生层叠上下文的原因. 1.根层叠上下文 指的是页面根元素 ...
- Attr的visitNewClass()方法解读
在visitNewClass()方法中有如下注释: We are seeing an anonymous class instance creation.In this case, the class ...
- 前端通信:ajax设计方案(五)--- 集成promise规范,更优雅的书写代码(改迭代已作废,移步迭代10)
该迭代已作废,最新的请移步这里:https://www.cnblogs.com/GerryOfZhong/p/10726306.html 距离上一篇博客书写,又过去了大概几个月了,这段时间暂时离开了这 ...