The Designer

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 761    Accepted Submission(s): 142

Problem Description
Nowadays, little haha got a problem from his teacher.His teacher wants to design a big logo for the campus with some circles tangent with each other. And now, here comes the problem. The teacher want to draw the logo on a big plane. You could see the example of the graph in the Figure1

At first, haha's teacher gives him two big circles, which are tangent with each other. And, then, he wants to add more small circles in the area where is outside of the small circle, but on the other hand, inside the bigger one (you may understand this easily if you look carefully at the Figure1.

Each small circles are added by the following principles.
* you should add the small circles in the order like Figure1.
* every time you add a small circle, you should make sure that it is tangented with the other circles (2 or 3 circles) like Figure1.
    
The teacher wants to know the total amount of pigment he would use when he creates his master piece.haha doesn't know how to answer the question, so he comes to you.

Task
The teacher would give you the number of small circles he want to add in the figure. You are supposed to write a program to calculate the total area of all the small circles.

 
Input
The first line contains a integer t(1≤t≤1200), which means the number of the test cases. For each test case, the first line insist of two integers R1 and R2 separated by a space (1≤R≤100), which are the radius of the two big circles. You could assume that the two circles are internally tangented. The second line have a simple integer N (1≤N≤10 000 000), which is the number of small circles the teacher want to add.
 
Output
For each test case: 
Contains a number in a single line, which shows the total area of the small circles. You should out put your answer with exactly 5 digits after the decimal point (NO SPJ).
 
Sample Input
2
5 4
1
4 5
1
 
Sample Output
3.14159
3.14159
 
Source
 
 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
#define mod 1000000007
typedef long long ll;
int t;
int r1,r2,n;
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d %d %d",&r1,&r2,&n);
if(r1<r2) swap(r1,r2);
double k1,k2,k3,k4,ans;
k1=-1.0/r1;
k2=1.0/r2;
k3=1.0/(r1-r2);
k4=k1+k2+k3;
ans=(r1-r2)*(r1-r2);
n--;
for(int i=; i<=n; i+=)
{
double r4=1.0/k4;
if(r4*r4<1e-)
break;
ans+=r4*r4;
if(i+<=n) ans+=r4*r4;
double k5=*(k1+k2+k4)-k3;
k3=k4;
k4=k5;
}
printf("%.5f\n",ans*acos(-1.0));
}
return ;
}

HDU 6158 笛卡尔定理+韦达定理的更多相关文章

  1. HDU 6158 笛卡尔定理 几何

    LINK 题意:一个大圆中内切两个圆,三个圆两两相切,再不断往上加新的相切圆,问加上的圆的面积和.具体切法看图 思路:笛卡尔定理: 若平面上四个半径为r1.r2.r3.r4的圆两两相切于不同点,则其半 ...

  2. The Designer (笛卡尔定理+韦达定理 || 圆的反演)

    Nowadays, little haha got a problem from his teacher.His teacher wants to design a big logo for the ...

  3. CF77E Martian Food(圆的反演or 笛卡尔定理+韦达定理)

    题面 传送门 这题有两种方法(然而两种我都想不到) 方法一 前置芝士 笛卡尔定理 我们定义一个圆的曲率为\(k=\pm {1\over r}\),其中\(r\)是圆的半径 若在平面上有两两相切,且六个 ...

  4. 爆炸几何之 CCPC网络赛 I - The Designer (笛卡尔定理)

    本文版权归BobHuang和博客园共有,不得转载.如想转载,请联系作者,并注明出处.   Nowadays, little hahahaha got a problem from his teache ...

  5. 2018 Multi-University Training Contest 1 H - RMQ Similar Sequence(HDU - 6305 笛卡尔树)

    题意: 对于一个序列a,构造一个序列b,使得两个序列,对于任意的区间 [l, r] 的区间最靠近左端点的那个最大值的位置,并且序列 b 满足 0 < bi < 1. 给定一个序列 a ,求 ...

  6. HDU - 6158 The Designer

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6158 本题是一个计算几何题——四圆相切. 平面上的一对内切圆,半径分别为R和r.现在这一对内切圆之间,按 ...

  7. HDU - 6305 RMQ Similar Sequence(笛卡尔树)

    http://acm.hdu.edu.cn/showproblem.php?pid=6305 题目 对于A,B两个序列,任意的l,r,如果RMQ(A,l,r)=RMQ(B,l,r),B序列里的数为[0 ...

  8. hdu 6305 RMQ Similar Sequence——概率方面的思路+笛卡尔树

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=6305 看题解,得知: 0~1内随机取实数,取到两个相同的数的概率是0,所以认为 b 序列是一个排列. 两个 ...

  9. hdu 1506 Largest Rectangle in a Histogram——笛卡尔树

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1506 关于笛卡尔树的构建:https://www.cnblogs.com/reverymoon/p/952 ...

随机推荐

  1. WPF编程,将控件所呈现的内容保存成图像的一种方法。

    原文:WPF编程,将控件所呈现的内容保存成图像的一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/article/detai ...

  2. [Oracle]System 表空间的文件丢失

    如果system 表空间的文件丢失,假设有备份的情况,可以恢复.数据库需要设置为mount 状态,然后restore/recover datafile 模拟实验: SQL> select nam ...

  3. 汇编 REPNE/REPNZ指令,SCASW指令,SCASD指令,SCAS指令

    知识点: REPNE/REPNZ 指令 SCASW 指令 SCASD 指令 SCAS 指令 一.SCASW 指令 //SCASB cmp word ptr [edi],al //对标志位的影响 ...

  4. CSS快速入门-基本选择器

    1.标签选择器 通过标签进行元素选择. <style> a { font-size:10px; color:red; } </style> 2.* *代表通配符,匹配任意标签, ...

  5. Azure 基础:自定义 Table storage 查询条件

    本文是在 <Azure 基础:Table storage> 一文的基础上介绍如何自定义 Azure Table storage 的查询过滤条件.如果您还不太清楚 Azure Table s ...

  6. c语言数字图像处理(一):bmp图片格式及灰度图片转换

    本篇文章首先介绍了bmp图片格式,主要参考wiki上的内容,包括bmp文件的存储方式,对于一些常见的bmp文件格式都给了例子,并且对8位 16位RGB555 16位RGB565格式的bmp文件进行了简 ...

  7. [Docker基础]如何清除不用的资源

    Docker - How to cleanup resources 有时你可能需要清理Docker中不用的资源,特别是在学习Docker过程中创建的镜像.容器.网络.存储卷等. delete volu ...

  8. Linux shell(1)

    Linux的Shell种类众多,常见的有:Bourne Shell(/usr/bin/sh或/bin/sh).Bourne Again Shell(/bin/bash).C Shell(/usr/bi ...

  9. vue 跳转路由传参数用法

    // 组件 a <template> <button @click="sendParams">传递</button> </template ...

  10. Linux命令(十一) 显示文件类型 file

    命令介绍 file 命令是用来显示文件的类型,对于每个给定的参数,该命令试图将文件分类,分辨的类型有文本文件.可执行文件.压缩文件.或其它可理解的数据格式. 常用参数介绍 -b 不显示文件名称,只显示 ...