传送门

我是真的弱,看题解都写了半天,,,

这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\)

上面那个式子无法化简qwq

把A和b的抛硬币情况连在一起,记成一个01串,那么如果某个串代表B获胜,那么这个串的反串就能代表A获胜

如果\(a=b\),那么答案还要减去平局情况,即$$\frac{2^{a+b}-\binom{a+b}{a}}{2}$$

如果\(a>b\),那么有种特殊情况是代表A获胜的某个串反串还是代表A获胜,这种情况假设B硬币朝上个数为\(i\),A的朝上个数比B多\(i\),那么有\(b-i<a-i-j\),情况数量有$$\sum_{i=0}{b}\sum_{j=1}{a-b-1}\binom{a}{i+j}\binom{b}{i}$$个,也就是$$\sum_{i=0}{b}\sum_{j=1}{a-b-1}\binom{a}{i+j}\binom{b}{b-i}$$然后有个什么范德蒙德卷积,就是\(\sum_{i+j=k}\binom{a}{i}\binom{b}{j}=\binom{a+b}{k}\),所以上式化简为$$\sum_{i=1}^{a-b-1}\binom{a+b}{b+i}$$

答案即$$\frac{2{a+b}+\sum_{i=1}{a-b-1}\binom{a+b}{b+i}}{2}$$

然后因为模数不为质数,所以组合数要用\(exlucas\)求

注意在实现的时候要优化时间复杂度,例如预处理模2和模5的阶乘等

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double using namespace std;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
LL a,b,k,K,k2,k5;
LL fc[2][2000000];
int pm[30][2],tt;
il LL fpow(LL a,LL b,LL mod)
{
LL an=1;
while(b){if(b&1) an=an*a%mod;a=a*a%mod,b>>=1;}
return an;
}
il void exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b) {x=1,y=0;return;}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
il LL ginv(LL a,LL b)
{
LL x,y;
exgcd(a,b,x,y);
return (x%b+b)%b;
}
il LL fac(LL n,LL p1,LL pk)
{
if(n<=1) return 1;
LL an=fpow(fc[p1&1][pk],n/pk,pk)*fc[p1&1][n%pk]%pk;
return an*fac(n/p1,p1,pk)%pk;
}
il LL C(LL n,LL m,LL p1,LL pk,bool d2)
{
LL kk=0;
for(LL i=n;i;i/=p1) kk+=i/p1;
for(LL i=m;i;i/=p1) kk-=i/p1;
for(LL i=n-m;i;i/=p1) kk-=i/p1;
if(kk-1>=k) return 0; //kk-1>=k,所以a*p^kk=0(mod p^k)
if(d2)
{
if(p1&1) kk=fpow(p1,kk,pk)*ginv(2,pk)%pk;
else kk=fpow(p1,kk-1,pk);
}
else kk=fpow(p1,kk,pk);
return fac(n,p1,pk)*ginv(fac(m,p1,pk),pk)%pk*ginv(fac(n-m,p1,pk),pk)%pk*kk%pk;
}
il LL exlcs(LL n,LL m,bool d2)
{
return (C(n,m,2,k2,d2)*k5%K*ginv(k5,k2)%K+C(n,m,5,k5,d2)*k2%K*ginv(k2,k5)%K)%K;
}
il void init(int a,int b)
{
int px=a&1;
fc[px][0]=1;
for(int i=1;i<=b;++i)
{
fc[px][i]=fc[px][i-1];
if(i%a) fc[px][i]=fc[px][i]*i%b;
}
} //预处理fac函数中的计算部分
il void print(int x,int kk)
{
kk/=10;
while(kk) putchar(x/kk%10+'0'),kk/=10;
putchar('\n');
} int main()
{
init(2,512),init(5,1953125);
while(scanf("%lld%lld%lld",&a,&b,&k)!=-1)
{
K=k2=k5=1;
int kb=k;while(kb--) K*=10,k2*=2,k5*=5;
if(a==b) print((fpow(2,a+b-1,K)-exlcs(a+b,a,1)+K)%K,K);
else
{
LL an=fpow(2,a+b-1,K);
for(LL i=b+1;i<=(a+b)/2;++i)
an=(an+exlcs(a+b,i,0)%K)%K; //根据C(a,b)=C(a,a-b)省去一半计算
if(!((a+b)&1)) an=(an-exlcs(a+b,(a+b)/2,1)+K)%K;
print(an,K);
}
}
return 0;
}

luogu P3726 [AH2017/HNOI2017]抛硬币的更多相关文章

  1. 洛谷P3726 [AH2017/HNOI2017]抛硬币(组合数+扩展Lucas)

    题面 传送门 题解 果然--扩展\(Lucas\)学了跟没学一样-- 我们先考虑\(a=b\)的情况,这种情况下每一个\(A\)胜的方案中\(A\)和\(B\)的所有位上一起取反一定是一个\(A\)败 ...

  2. [AH2017/HNOI2017]抛硬币(扩展lucas)

    推式子+exlucas. 题意: 小 A 和小 B 是一对好朋友,两个人同时抛 b 次硬币,如果小 A 的正面朝上的次数大于小 B 正面朝上的次数,则小 A 获胜. 小 A 决定在小 B 没注意的时候 ...

  3. 题解 洛谷 P3726 【[AH2017/HNOI2017]抛硬币】

    可以分别枚举两人正面朝上的次数来统计答案,所求即为 \[\sum_{i=0}^{a}\sum_{j=0}^{b} \binom{a}{i} \binom{b}{j} [i>j] \] 将\(i\ ...

  4. [AH2017/HNOI2017]抛硬币

    传送门 这个题的暴力比较好想--然后用一些组合的知识就可以变成正解了. 首先我们考虑a=b的情况.我们把扔出来的硬币看成是一个01序列,那么对于一个b获胜的序列,他在每一位都按位异或1之后必然是一个a ...

  5. bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]

    4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...

  6. 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)

    [BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...

  7. [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)

    题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...

  8. bzoj 4830: [Hnoi2017]抛硬币

    Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是 已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A ...

  9. [AH/HNOI2017]抛硬币

    题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...

随机推荐

  1. MVC过滤器处理Session过期

    一.自定义一个Action过滤器 public class CheckSession: ActionFilterAttribute { public override void OnActionExe ...

  2. 原生js实现each方法

    首先我们了解一下什么是callback函数 CALLBACK,即回调函数,是一个通过函数指针调用的函数.如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用为调用它所指向的函数时,我们就 ...

  3. 第六篇 - bs4爬取校花网

    环境:python3  pycharm 模块:requests  bs4  urlretrieve  os  time 第一步:获取网页源代码 import requests from bs4 imp ...

  4. NCBI通过氨基酸位置查看相邻SNP

    进入NCBI网站 在SNP的搜索框中输入SNP位点,比如“rs52811957” 在弹出的对话框中选择“Gene View” 进入以后会显示该变异相邻SNP.原始氨基酸.变异后的氨基酸.positio ...

  5. RabbitMQ入门-竞争消费者模式

    上一篇讲了个 哈喽World,现在来看看如果存在多个消费者的情况. 生产者: package com.example.demo; import com.rabbitmq.client.Channel; ...

  6. WPF界面+halcon生成的C#文件

    1.新建WPF应用程序完成后,解决方案资源管理器——引用处右键,添加引用如下两个dll 工具箱,空白处右键,选择项(只添加halcondotnet.dll,位置同上).这样halcon平台的控件就添加 ...

  7. JS学习笔记Day4

    一.什么是函数 将反复使用的功能代码,封装成一独立的模块,这个模块叫做函数 二.封装函数的好处 1.一次封装,多次使用 2.使程序可控 三.函数的分类:内置()函数和自定义函数 四.函数的数据类型(f ...

  8. 25 个常用的 Linux iptables 规则

    # 1. 删除所有现有规则 iptables -F   # 2. 设置默认的 chain 策略 iptables -P INPUT DROP iptables -P FORWARD DROP ipta ...

  9. jmeter源码导入eclipse步骤

    1.新建标准java项目2.右击项目选import filesystem 将apache-jmeter-4.0整个目录勾选allow output folders for source folders ...

  10. VSCode 配置

    官网 https://code.visualstudio.com/ 便携化 Windows,Linux 在 Code.exe 所在目录创建 data 目录 macOS 在 Code.exe 所在目录创 ...