题意是求一列连续升序的数经过一个栈之后能变成的不同顺序的数目。

开始时依然摸不着头脑,借鉴了别人的博客之后,才知道这是卡特兰数,卡特兰数的计算公式是:a( n )  =  ( ( 4*n-2 ) / ( n+1 ) * a( n-1 ) );

用一个二维数组,a[ i ][ 0 ] 表示第 i 个卡特兰数的位数,a[ i ][ j ] ( j != 0) 中存第 i 个卡特兰数从低位到高位的第 j 个数,也就是说数是倒过来存的,输出时要倒着输出。

代码如下:

 #include<bits/stdc++.h>
int a[][];
void ktl()
{
int yu,len;
a[][] = ;
a[][] = ;
a[][] = ;
a[][] = ;
len = ;
for(int i = ; i < ; ++i)
{
yu = ;
for(int j = ; j <= len; ++j)// 第一步:h1(n)= (4*n-2) * h(n-1);
{
int t = (a[i-][j])*(*i-) + yu;
yu = t/;
a[i][j] = t%;
}
while(yu)
{
a[i][++len] = yu%;
yu /= ;
}
for(int j = len; j >= ; --j)//第二步:h(n) = h1(n) / (n+1);
{
int t = a[i][j] + yu*;
a[i][j] = t/(i+);
yu = t%(i+);
}
while(!a[i][len]) --len;//去掉前导零
a[i][] = len;
}
}
int main()
{
ktl();
int n;
while(~scanf("%d",&n))
{
for(int i = a[n][]; i > ; --i)
printf("%d",a[n][i]);
puts("");
}
return ;
}

另外,卡特兰数是很神奇的数,应用广泛,在 5 元 10 元排队买票问题,阶梯切割问题,n * n方格行走问题,括号匹配问题,数字入栈处理问题等等问题都可应用到卡特兰数,这些应用的实质感觉是相似的,就是在数量相同的元素 A 和元素 B 组合时,要保证按一定的方向考虑时 A 的个数始终不少于 B 的个数。有关于卡特兰数,请移步:卡特兰数性质及应用 、组合数学及其应用——卡特兰数 。

HDU 1023(卡特兰数 数学)的更多相关文章

  1. hdu 1023 卡特兰数+高精度

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  2. Train Problem II HDU 1023 卡特兰数

    Problem Description As we all know the Train Problem I, the boss of the Ignatius Train Station want ...

  3. hdu 1023 卡特兰数《 大数》java

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  4. HDU 4828 (卡特兰数+逆)

    HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0.后n个人标为1.然后去全排列,全排列的数列.假设每一个1的前面相应的0大于等于1,那么就是满足的序列,假设把0看成入栈,1看 ...

  5. hdu 1130,hdu 1131(卡特兰数,大数)

    How Many Trees? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  6. HDU 1023 Catalan数+高精度

    链接:HDU 1023 /**************************************** * author : Grant Yuan * time : 2014/10/19 15:5 ...

  7. HDU 4828 (卡特兰数+逆元)

    HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0,后n个人标为1.然后去全排列,全排列的数列,假设每一个1的前面相应的0大于等于1,那么就是满足的序列.假设把0看成入栈,1看 ...

  8. 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)

    题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...

  9. Buy the Ticket HDU 1133 卡特兰数应用+Java大数

    Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...

随机推荐

  1. BZOJ2961 共点圆[CDQ分治]

    题面 bzoj 其实就是推一下圆的式子 长成这个样子 假设要查询的点是(x, y) 某个圆心是(p, q) \((x - p)^2 + (y - q)^2 \leq p^2 + q^2\) 变成 \( ...

  2. 【总结】字符串hash

    序列字符串\(Hash\) 直接hash即可qwq 预处理:\(Hash[3][i]\)(\(Hash\)值),\(Pow[3][i]\)(用来乘系数) 判断相等:\(box_1=Hash[3][i] ...

  3. html图像、绝对路径和相对路径,链接

    html图像 <img>标签可以在网页上插入一张图片,它是独立使用的标签,通过"src"属性定义图片的地址,通过"alt"属性定义图片加载失败时显示 ...

  4. poj2431(优先队列+贪心)

    题目链接:http://poj.org/problem?id=2431 题目大意:一辆卡车,初始时,距离终点L,油量为P,在起点到终点途中有n个加油站,每个加油站油量有限,而卡车的油箱容量无限,卡车在 ...

  5. 一个ArrayList在循环过程中删除,会不会出问题,为什么?

    ArrayList中的remove方法(注意ArrayList中的remove有两个同名方法,只是入参不同,这里看的是入参为Object的remove方法)是怎么实现的: public boolean ...

  6. Spring Mvc和Spring Boot配置Tomcat支持Https

    SpringBoot配置支持https spring boot因为是使用内置的tomcat,所以只需要一些简单的配置即可. 1.首先打开命令行工具,比如cmd,输入以下命令 keytool -genk ...

  7. 基于Jenkins,docker实现自动化部署(持续交互)

      前言 随着业务的增长,需求也开始增多,每个需求的大小,开发周期,发布时间都不一致.基于微服务的系统架构,功能的叠加,对应的服务的数量也在增加,大小功能的快速迭代,更加要求部署的快速化,智能化.因此 ...

  8. Windows下VMware14黑屏

    解决方法 以管理员身份运行命令提示符,执行netsh winsock reset

  9. vetur插件提示 'v-for' directives require 'v-bind:key' directives.错误的解决办法

    在用vscode编写vue代码时,因为安装的有vetur插件,所以当代码中有v-for语法时,会提示 [vue-language-server] 'v-for' directives require ...

  10. 都是分号惹的祸 ORA-00911

    使用JMeter连接oracle数据库,访问JDBC 请求,执行结果提示:ORA-00911: ??Ч??? 意思为无效的字符错误 说明了在执行的的SQL语句中出现了无效字符,所以在AQL语句无法通过 ...