UOJ#275. 【清华集训2016】组合数问题 数位dp
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ275.html
题解
用卢卡斯定理转化成一个 k 进制意义下的数位 dp 即可。
算答案的时候补集转化一下会好写一些。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=105,mod=1e9+7;
int T,k;
LL n,m;
int C[N][N];
int dp[64+5][2][2][2];
int vn[N],vm[N],cn,cm;
int calc(LL n,LL m){
int a=(n+1)%mod,b=(n-m)%mod;
a=1LL*a*(a+1)/2%mod;
b=1LL*b*(b+1)/2%mod;
a=(a-b+mod)%mod;
return a;
}
void Add(int &x,int y){
if ((x+=y)>=mod)
x-=mod;
}
int DP(int d,int fe,int fn,int fm){
if (!d)
return 1;
int &ans=dp[d][fe][fn][fm];
if (~ans)
return ans;
ans=0;
int ln=fn?vn[d]:k-1;
int lm=fm?vm[d]:k-1;
for (int i=0;i<=ln;i++)
for (int j=fe?min(i,lm):lm;j>=0;j--)
if (C[i][j])
Add(ans,DP(d-1,fe&&i==j,fn&&i==vn[d],fm&&j==vm[d]));
return ans;
}
void solve(){
n=read(),m=read();
m=min(n,m);
int All=calc(n,m);
if (k==1)
return (void)(printf("%lld\n",All));
cn=cm=0;
memset(vn,0,sizeof vn);
memset(vm,0,sizeof vm);
while (n)
vn[++cn]=n%k,n/=k;
while (m)
vm[++cm]=m%k,m/=k;
memset(dp,-1,sizeof dp);
cout << (All-DP(cn,1,1,1)+mod)%mod << endl;
}
int main(){
T=read(),k=read();
for (int i=0;i<k;i++)
C[i][0]=C[i][i]=1%k;
for (int i=1;i<k;i++)
for (int j=1;j<k;j++)
C[i][j]=(C[i-1][j-1]+C[i-1][j])%k;
while (T--)
solve();
return 0;
}
UOJ#275. 【清华集训2016】组合数问题 数位dp的更多相关文章
- [UOJ#274][清华集训2016]温暖会指引我们前行
[UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...
- UOJ275 [清华集训2016] 组合数问题 【Lucas定理】【数位DP】
题目分析: 我记得很久以前有人跟我说NOIP2016的题目出了加强版在清华集训中,但这似乎是一道无关的题目? 由于$k$为素数,那么$lucas$定理就可以搬上台面了. 注意到$\binom{i}{j ...
- BZOJ 4732 UOJ #268 [清华集训2016]数据交互 (树链剖分、线段树)
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4732 (UOJ) http://uoj.ac/problem/268 题解 ...
- [UOJ#276][清华集训2016]汽水[分数规划+点分治]
题意 给定一棵 \(n\) 个点的树,给定 \(k\) ,求 \(|\frac{\sum w(路径长度)}{t(路径边数)}-k|\)的最小值. \(n\leq 5\times 10^5,k\leq ...
- UOJ 275. 【清华集训2016】组合数问题
UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...
- UOJ #269. 【清华集训2016】如何优雅地求和
UOJ #269. [清华集训2016]如何优雅地求和 题目链接 给定一个\(m\)次多项式\(f(x)\)的\(m+1\)个点值:\(f(0)\)到\(f(m)\). 然后求: \[ Q(f,n,x ...
- [UOJ#276]【清华集训2016】汽水
[UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一 ...
- UOJ #274. 【清华集训2016】温暖会指引我们前行 [lct]
#274. [清华集训2016]温暖会指引我们前行 题意比较巧妙 裸lct维护最大生成树 #include <iostream> #include <cstdio> #incl ...
- UOJ_274_[清华集训2016]温暖会指引我们前行_LCT
UOJ_274_[清华集训2016]温暖会指引我们前行_LCT 任务描述:http://uoj.ac/problem/274 本题中的字典序不同在于空串的字典序最大. 并且题中要求排序后字典序最大. ...
- [清华集训2016]温暖会指引我们前行——LCT+最大生成树
题目链接: [清华集训2016]温暖会指引我们前行 题目大意:有$n$个点$m$次操作,每次操作分为三种:1.在$u,v$两点之间连接一条编号为$id$,长度为$l$,温度为$t$的边.2.查询从$u ...
随机推荐
- Kubernetes重要概念理解
Kubernetes重要概念理解 kubernetes是目前最主流的容器编排工具,是下一代分布式架构的王者.2018年的kubernetes第一个版本1.10已经发布.下面整理一下,kubernete ...
- 基于数组的循环队列(C++模板实现)
循环队列使用数组实现的话,简单.方便.之前实现的队列,当尾端索引到达队列最后的时候,无论前面是否还有空间,都不能再添加数据了.循环队列使得队列的存储单元可以循环利用,它需要一个额外的存储单元来判断队列 ...
- [C]关于extern与struct
问题 我曾经很困惑,就是在两个编译单元当中,如何把一个单元中声明的struct结构引入到另外一个单元中来,折腾了很久,后来发现这位大神的留言 不是这么用的…… 类型的定义和类型变量的定义不同,类型定义 ...
- [C]C语言中的指针和内存泄漏几种情况
引言 原文地址:http://www.cnblogs.com/archimedes/p/c-point-memory-leak.html,转载请注明源地址. 对于任何使用C语言的人,如果问他们C语言的 ...
- sudo初级授权设置
linux中,不可能人人都是用root用户去修改一些文件或者操作,所以一般需要用到对用户的权限控制,linux中可以是sudo来实现 首先,权限控制的文件中 /etc/sudoers中进行配置,文件为 ...
- 随机生成n位随机数(包含大写字母、小写字母、数字)
package com.java.weiju; import java.security.SecureRandom; import java.util.Date; import java.util.R ...
- IOS 常遇到的报错警告 以及 解决办法
1. This application is modifying the autolayout engine from a background thread, which can lead to ...
- Modbus库开发笔记之六:Modbus RTU Master开发
这一节我们来封装最后一种应用(Modbus RTU Master应用),RTU主站的开发与TCP客户端的开发是一致的.同样的我们也不是做具体的应用,而是实现RTU主站的基本功能.我们将RTU主站的功能 ...
- windows+mysql集群搭建-三分钟搞定集群
注:本文来源: 陈晓婵 < windows+mysql集群搭建-三分钟搞定集群 > 一:mysql集群搭建教程-基础篇 计算机一级考试系统要用集群,目标是把集群搭建起来,保证一 ...
- kindEditor 富文本编辑器 使用介绍
第一版:存放位置: ---->把该创建的文件包放到javaWeb 过程的 WEB_INF 下:如图所示. 第二步:< kindEditor 插件的引用> :JS引用 <scr ...