原文链接https://www.cnblogs.com/zhouzhendong/p/NOI2018Day2T1.html

题目传送门 - 洛谷P4774

题意

题解

  首先我们仔细看一看样例可以发现如果一回合打不过巨龙就输了。

  所以每一回合都要赢。所以每一次选择的宝剑都是可以提前预知的。

  我们用个 set 来支持快速插入和 upper_bound ,可以在 $O((n+m)\log m)$ 的时间复杂度内处理得到每一把宝剑要处理的巨龙。

  我们考虑化简一下原题的意思:

  令 $v_i$ 为攻击第 $i$ 只龙的宝剑的攻击力。

  则对于最终答案 $x$ 必然满足:

$$\forall i\in \{1,2,\cdots,n\}$$

$$a_i\leq x\times v_i$$

$$a_i\equiv x\times v_i\pmod {p_i}$$

  我们先考虑第二个条件。

$$a_i\equiv x\times v_i\pmod {p_i}\Longrightarrow x\equiv \cfrac{a_i}{v_i}\pmod {p_i}$$

  于是我们需要求出 $(v_i)^{-1} \pmod {p_i}$ 。

  但是 $v_i$ 的逆元在对 $p_i$ 取模意义下不一定存在,不存在的条件是 $\gcd(v_i,p_i)>1$ 。这个求逆元一般方法自己百度。

  但是即使不存在,也有可能使得 $x\times v_i\equiv a_i$ 。

  我们来看一看原式的本质:

$$a_i=x\times v_i + k\times p_i$$

  令 $g=\gcd(a_i,v_i,p_i)$ ,上式中的 $a_i,v_i,p_i$ 都除以 $g$ ,上式依旧成立。

  接下来,上述 $a_i,v_i,p_i$ 的值都更新成他们除以 $g$ 的值。

  此时,如果 $g2=\gcd(v_i,p_i)>1$ ,那么由于 $\gcd(g2,a_i)=1$ ,所以有 $x\times v_i + k\times p_i = M\times g2 \not \equiv a_i \pmod {g2 \times (p_i÷g2)}$ ,其中 $M=(x\times v_i + k\times p_i)÷g2$ 。

  那么显然无解了。

  如果 $g2=1$ ,那么显然有解。

  于是我们依照上述做法,可以判除掉一部分无解的情况,并得到关于 $x$ 的一次同余方程组。

  令 $x_i=a_i\times (v_i)^{-1}\pmod {p_i}$ ,则:

$$\begin{cases}x&\equiv&x_1&\pmod {p_1}\\x&\equiv&x_2&\pmod {p_2}\\ &&\vdots\\x&\equiv&x_n&\pmod {p_n}\end{cases}$$

  这个东西直接中国剩余定理合并一下(可能会无解)就可以得到 $x\equiv W \pmod P$ 这样的一般式子了。由于本题数据范围比较大,我用了快速乘来防止炸 $long \ long $ 。

  得到 $x$ 的一般同余式子之后,我们再去看看之前的第一个条件。

$\forall i\in\{1,2,\cdots,n\}, \ \ \ a_i\leq x$

  由于 $x=kP + W$ ,所以我们可以将 $x$ 代入上面的式子中,并根据所有的式子求出 $k$ 的取值范围。于是就可以得到 $x$ 的最小值了!

  时间复杂度 $O(n\log n)$ 。

  期望得分 : 100

  UPD(2018-07-20  22:16): 洛谷测试 :100

  UPD(2018-07-21): LOJ测试 :100

  UPD(2018-07-22): 评测鸭测试: 100

  UPD(2018-07-24): UOJ测试 : 100

  UPD(2018-xxxxx): xxx测试:100

  实际得分 : 75 (该分数为推测结果( Day2 少了 25 分大概只有可能是这里了))

  吐槽啊!CCF 老爷机跑的也太慢了吧??是不是没有开 O2 啊?

代码

#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <vector>
#include <set>
#include <queue>
using namespace std;
typedef long long LL;
bool isd(char ch){
return '0'<=ch&&ch<='9';
}
LL read(){
LL x=0;
char ch=getchar();
while (!isd(ch))
ch=getchar();
while (isd(ch))
x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x;
}
const int N=100005;
int T,n,m;
LL a[N],p[N],h[N],v[N],x[N];
multiset <LL> S;
LL ex_gcd(LL a,LL b,LL &x,LL &y){
if (!b){
x=1,y=0;
return a;
}
LL res=ex_gcd(b,a%b,y,x);
y-=x*(a/b);
return res;
}
LL gcd(LL a,LL b){
return b?gcd(b,a%b):a;
}
LL inv(LL v,LL p){
LL x,y,g=ex_gcd(v,p,x,y);
if (g>1)
return -1;
return (x+p)%p;
}
LL Mul(LL a,LL b,LL p){
a=(a%p+p)%p;
b=(b%p+p)%p;
LL ans=0;
for (;a;a>>=1,b=(b<<1)%p)
if (a&1LL)
ans=(ans+b)%p;
return ans;
}
bool CRT(LL w1,LL p1,LL w2,LL p2,LL &w,LL &p){
LL x,y,z=w2-w1,g=ex_gcd(p1,p2,x,y);
if (z%g)
return 0;
LL t=z/g;
x=Mul(x,t,p2/g);
p=p1/g*p2;
w=((w1+Mul(x,p1,p))%p+p)%p;
return 1;
}
LL Solve(){
n=read(),m=read();
for (int i=1;i<=n;i++)
a[i]=read();
for (int i=1;i<=n;i++)
p[i]=read();
for (int i=1;i<=n;i++)
h[i]=read();
S.clear();
while (m--)
S.insert(read());
for (int i=1;i<=n;i++){
multiset <LL> :: iterator p=S.begin();
if ((*p)<a[i])
p=--S.upper_bound(a[i]);
v[i]=*p,S.erase(p);
S.insert(h[i]);
}
for (int i=1;i<=n;i++){
LL g=gcd(a[i],gcd(v[i],p[i]));
v[i]/=g,p[i]/=g,a[i]/=g;
LL Inv=inv(v[i],p[i]);
if (Inv<0)
return -1LL;
x[i]=Mul(a[i],Inv,p[i]);
}
LL W=x[1],P=p[1];
for (int i=2;i<=n;i++)
if (!CRT(W,P,x[i],p[i],W,P))
return -1LL;
// x = W (mod P)
for (int i=1;i<=n;i++){
LL val=(a[i]+v[i]-1)/v[i];
if (val<=W)
continue;
LL k=(val-W+P-1)/P;
W+=k*P;
}
return W;
}
int main(){
freopen("dragon.in","r",stdin);
freopen("dragon.out","w",stdout);
scanf("%d",&T);
while (T--)
printf("%lld\n",Solve());
fclose(stdin);fclose(stdout);
return 0;
}

  

NOI2018Day2T1 屠龙勇士 set 扩展欧几里德 中国剩余定理的更多相关文章

  1. POJ2891 Strange Way to Express Integers 扩展欧几里德 中国剩余定理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2891 题意概括 给出k个同余方程组:x mod ai = ri.求x的最小正值.如果不存在这样的x, ...

  2. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

  3. 洛谷P3868 [TJOI2009]猜数字(中国剩余定理,扩展欧几里德)

    洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[ ...

  4. NOI 2018 屠龙勇士 (拓展中国剩余定理excrt+拓展欧几里得exgcd)

    题目大意:略 真是一波三折的一道国赛题,先学了中国剩余定理,勉强看懂了模板然后写的这道题 把取出的宝剑攻击力设为T,可得Ti*x=ai(mod pi),这显然是ax=c(mod b)的形式 这部分用e ...

  5. gcd,扩展欧几里得,中国剩余定理

    1.gcd: int gcd(int a,int b){ ?a:gcd(b,a%b); } 2.中国剩余定理: 题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题: ...

  6. [洛谷P4777] [模板] 扩展中国剩余定理

    扩展中国剩余定理,EXCRT. 题目传送门 重温一下中国剩余定理. 中国剩余定理常被用来解线性同余方程组: x≡a[1] (mod m[1]) x≡a[2] (mod m[2]) ...... x≡a ...

  7. POJ 1006 中国剩余定理

    #include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(sca ...

  8. [TCO 2012 Round 3A Level3] CowsMooing (数论,中国剩余定理,同余方程)

    题目:http://community.topcoder.com/stat?c=problem_statement&pm=12083 这道题还是挺耐想的(至少对我来说是这样).开始时我只会60 ...

  9. 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)

    洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...

随机推荐

  1. 1.ROS启动小乌龟

        启动turtlesim 在三个不同的终端中分别执行如下三个指令 roscore rosrun turtlesim turtlesim_node rosrun turtlesim turtle_ ...

  2. 阿里云主机Nginx下配置NodeJS、Express和Forever

    https://cnodejs.org/topic/5059ce39fd37ea6b2f07e1a3 AngularJS中文社区即运行在阿里云主机上,本站使用Nginx引擎,为了AngularJS,我 ...

  3. JS,Jquery获取各种屏幕的宽度和高度(转载)

    原文:https://www.cnblogs.com/fuyuanming/articles/5453756.html 1.JS 网页可见区域宽: document.body.clientWidth ...

  4. Android来电拦截及来电转移

    1. 电话拦截这个功能大家可能都知道了,就是利用反射原理调用ITelephony的隐藏方法来实现.这个就不说了,在附件的代码里有.2.拦截后提示忙音/空号/已关机/已停机这个功能其实是要用到MMI指令 ...

  5. 19)django-cookie使用

    Cookie,有时也用其复数形式 Cookies,指某些网站为了辨别用户身份.进行 session 跟踪而储存在用户本地终端上的数据(通常经过加密) 一:cookie cookie在客户端浏览器的是以 ...

  6. js---json对象拆分

    var a={ "bb":"world", "a0":1, "a1":2, "b0":4, &quo ...

  7. Confluence 6 审查日志

    日志审查能够允许管理查看你 Confluence 站点所做的修改.这个在你希望对你的 Confluence 进行问题查看或者是你希望对你 Confluence 保留重要的修改事件,例如修改了全局权限. ...

  8. CentOS7图形界面与命令行界面切换(转载)

    在图形界面使用 ctrl+alt+F2切换到dos界面 dos界面 ctrl+alt+F2切换回图形界面 在命令上 输入 init 3 命令 切换到dos界面 输入 init 5命令 切换到图形界面 ...

  9. list的add()方法与addAll()方法简介

    简单描述:月读别人的代码,发现了一个有意思的东西,list的一个方法,addAll(),然后就去度娘了一下,发现这个还挺有用的. 吐槽一下:为什么自己没发现这个方法呢?因为平时自己写list的时候,基 ...

  10. 【kafka】生产者速度测试

    非常有用的参考博客:http://blog.csdn.net/qq_33160722/article/details/52903380 pykafka文档:http://pykafka.readthe ...