「SCOI2014」方伯伯运椰子

可以看出是分数规划

然后我们可以看出其实只需要改变1的流量就可以了,因为每次改变要保证流量守恒,必须流成一个环,在正负性确定的情况下,变几次是无所谓的。

然后按照套路,设

\[ans=\frac{X-Y}{k}\\
ans\times k =X-Y\\
ans\times k=-\sum w_i\\
\sum ans-w_i=0
\]

从第二部到第三步是把X和Y中的共同边都减掉了

\(w\)是根据扩容或者缩容建的边权为\(b+d,a-d\)的边权集合

注意一点,缩小容量必须\(c_i>0\)

然后发现环的边数就是\(k\),减过去就可以二分ans了


Code:

#include <cstdio>
#include <cctype>
#include <cstring>
template <class T>
void read(T &x)
{
x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
}
const int N=5010;
const int M=6010;
int n,m,u[N],v[N],a[N],b[N],c[N],d[N];
int head[N],to[M],Next[M],cnt;double edge[M];
void add(int u,int v,double w)
{
to[++cnt]=v,edge[cnt]=w,Next[cnt]=head[u],head[u]=cnt;
}
int used[N],vis[N],q[N*N],l,r;double dis[N];
bool spfa()
{
for(int i=1;i<=n+2;i++) dis[i]=1e12;
memset(vis,0,sizeof vis);
memset(used,0,sizeof used);
dis[q[l=r=1]=n+1]=0;
while(l<=r)
{
int now=q[l++];
used[now]=0;
for(int v,i=head[now];i;i=Next[i])
if(dis[v=to[i]]>dis[now]+edge[i])
{
dis[v]=dis[now]+edge[i];
if((++vis[v])==n+2) return true;
if(!used[v]) used[q[++r]=v]=1;
}
}
return false;
}
bool check(double x)
{
memset(head,0,sizeof head),cnt=0;
for(int i=1;i<=m;i++)
{
if(u[i]!=n+1)
{
if(c[i]!=0) add(v[i],u[i],x+a[i]-d[i]);
add(u[i],v[i],x+b[i]+d[i]);
}
else
add(u[i],v[i],0);
}
return spfa();
}
int main()
{
read(n),read(m);
double l=0,r=0;
for(int i=1;i<=m;i++)
{
read(u[i]),read(v[i]),read(a[i]);
read(b[i]),read(c[i]),read(d[i]);
r+=1.0*c[i]*d[i];
}
while(l+1e-6<r)
{
double mid=(l+r)/2;
if(check(mid)) l=mid;
else r=mid;
}
printf("%.2lf\n",l);
return 0;
}

2019.2.24

「SCOI2014」方伯伯运椰子 解题报告的更多相关文章

  1. 「SCOI2014」方伯伯的 OJ 解题报告

    「SCOI2014」方伯伯的 OJ 和列队有点像,平衡树点分裂维护即可 但是需要额外用个set之类的对编号查找点的位置 插入完了后记得splay,删除时注意特判好多东西 Code: #include ...

  2. 「SCOI2014」方伯伯的商场之旅 解题报告

    「SCOI2014」方伯伯的商场之旅 我一开始的想法会被两个相同的集合位置去重给搞死,不过应该还是可以写的,讨论起来老麻烦. 可以先钦定在\(1\)号点集合,然后往后调整一部分. 具体一点,通过前缀和 ...

  3. 「SCOI2014」方伯伯的玉米田 解题报告

    #2211. 「SCOI2014」方伯伯的玉米田 发现是取一个最长不下降子序列 我们一定可以把一个区间加的右端点放在取出的子序列的最右边,然后就可以dp了 \(dp_{i,j}\)代表前\(i\)个玉 ...

  4. 「SCOI2014」方伯伯的商场之旅

    「SCOI2014」方伯伯的商场之旅 题目描述 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 \(i\) 的人面前的第 \(j\) 堆的石 ...

  5. bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 144  Solved: 78[Submit][Status ...

  6. bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]

    3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...

  7. bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Statu ...

  8. 3597: [Scoi2014]方伯伯运椰子[分数规划]

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MB Submit: 404  Solved: 249 [Submit][Sta ...

  9. 【BZOJ3597】方伯伯运椰子(分数规划,网络流)

    [BZOJ3597]方伯伯运椰子(分数规划,网络流) 题解 给定了一个满流的费用流模型 如果要修改一条边,那么就必须满足流量平衡 也就是会修改一条某两点之间的路径上的所有边 同时还有另外一条路径会进行 ...

随机推荐

  1. JSP页面导致tomcat内存溢出一例

    今天发现一个奇怪的问题,一个tomcat应用,里面只有一个单纯的jsp页面,而且这个jsp页面没有任何java代码——想用这个jsp页面配合tomcat完成一个性能验证.但是用jmeter压测了几分钟 ...

  2. MySQL经典编程问题

    星期数的问题 1 计算日期是周几 这个问题看似很简单,可以用MySQL内置函数来计算 (1) weekday(date)其返回值是0-6,0代表Monday, 6代表Sunday: (2) dayof ...

  3. 工作效率提升之Eclipse篇(1):干掉烦人的xml文件的validation

    每次启动maven项目,都会有一堆烦人的xml文件的validation,一旦网络较慢,项目重新启动的时候,这些多余的验证纯属浪费时间. Eclipse上取消validation的方法: 1.菜单[W ...

  4. 图解Python的直接赋值与浅拷贝和深度拷贝三者区别

    直接赋值:其实就是对象的引用(别名). 浅拷贝(copy):拷贝父对象,不会拷贝对象的内部的子对象. 深拷贝(deepcopy): copy 模块的 deepcopy 方法,完全拷贝了父对象及其子对象 ...

  5. 本地git连接远程github

    git要连接GitHub仓库,是通过SSH加密连接的,所以必须要创建SSH key ssh-key -t rsa -C "youremail@example.com" 这里邮箱必须 ...

  6. umount -fl用法

    umount, 老是提示:device is busy, 服务又不能停止的.可以用"umount -fl"解决! 挂载: mount - mount a filesystem mo ...

  7. 除了binlog2sql工具外,使用python脚本闪回数据(数据库误操作)

    利用binlog日志恢复数据库误操作数据 在人工手动进行一些数据库写操作的时候(比方说数据修改),尤其是一些不可控的批量更新或删除,通常都建议备份后操作.不过不怕万一,就怕一万,有备无患总是好的.在线 ...

  8. 简单比较init-method,afterPropertiesSet和BeanPostProcessor

    一.简单介绍 1.init-method方法,初始化bean的时候执行,可以针对某个具体的bean进行配置.init-method需要在applicationContext.xml配置文档中bean的 ...

  9. 21.PHP实现Word/Excel/PPT转换为PDF

    参考文档: https://www.cnblogs.com/woider/p/7003481.html http://blog.csdn.net/aoshilang2249/article/detai ...

  10. mysql “Too many connections” 解决办法

    今天生产服务器上的MySQL出现了一个不算太陌生的错误“Too many connections”.平常碰到这个问题,我基本上是修改/etc/my.cnf的max_connections参数,然后重启 ...