CF739E Gosha is hunting
法一:
匹配问题,网络流!
最大费用最大流,S到A,B流a/b费0,A,B到i流1费p[i]/u[i],同时选择再减p[i]*u[i]?
连二次!所以i到T流1费0流1费-p[i]*u[i]
最大流由于ab都选择完最优
最大费用,所以不会第一次走-p[i]*u[i]
法二:
DP怎么写?
dp[i][j][k]
优化?
一定选择a、b个!
恰好选择a、b个?
WQS二分!
一定是满足凸函数的性质的
所以选择若干个a,代价ca,求dp[i][b]
再次WQS二分!
所以选择若干个a,b,代价ca,cb,求dp[i]
O(nlog^2n)
卡精度
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define num (ch^'0')
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=num;isdigit(ch=getchar());x=x*+num);
(fl==true)&&(x=-x);
}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');} namespace Miracle{
const int N=;
const double eps=1e-;
int numa[N],numb[N];
int n,a,b;
double p[N],u[N];
double dp[N];
void wrk(double ca,double cb){
for(reg i=;i<=n;++i){
dp[i]=dp[i-];numa[i]=numa[i-];numb[i]=numb[i-];
if(dp[i]<dp[i-]+p[i]-ca-eps){
dp[i]=dp[i-]+p[i]-ca;numa[i]=numa[i-]+;numb[i]=numb[i-];
}
if(dp[i]<dp[i-]+u[i]-cb-eps){
dp[i]=dp[i-]+u[i]-cb;numb[i]=numb[i-]+;numa[i]=numa[i-];
}
if(dp[i]<dp[i-]+u[i]+p[i]-p[i]*u[i]-ca-cb-eps){
dp[i]=dp[i-]+u[i]+p[i]-p[i]*u[i]-ca-cb;numb[i]=numb[i-]+;numa[i]=numa[i-]+;
}
}
}
double che(double ca){
double l=,r=;
for(reg i=;i<=;++i){
double mid=(l+r)/;
wrk(ca,mid);
if(numb[n]>b){
l=mid;
}else{
r=mid;
}
}
return (l+r)/;
}
int main(){
rd(n);rd(a);rd(b);
for(reg i=;i<=n;++i){
scanf("%lf",&p[i]);
}
for(reg i=;i<=n;++i){
scanf("%lf",&u[i]);
}
double l=,r=,ka,kb;
for(reg i=;i<=;++i){
double mid=(l+r)/;
kb=che(mid);
if(numa[n]>a){
l=mid;
}else{
r=mid;
}
}
ka=(l+r)/;
wrk(ka,kb);
printf("%.10lf",dp[n]+ka*a+kb*b);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/3/22 20:22:58
*/
巧妙之处:虽然不是恰好选择,但是选择a,b个一定是最优的!(就算是区间,也可以区间WQS二分)
CF739E Gosha is hunting的更多相关文章
- CF739E Gosha is hunting 【WQS二分 + 期望】
题目链接 CF739E 题解 抓住个数的期望即为概率之和 使用\(A\)的期望为\(p[i]\) 使用\(B\)的期望为\(u[i]\) 都使用的期望为\(p[i] + u[i] - u[i]p[i] ...
- CF739E Gosha is hunting DP+wqs二分
我是从其他博客里看到这题的,上面说做法是wqs二分套wqs二分?但是我好懒呀,只用了一个wqs二分,于是\(O(nlog^2n)\)→\(O(n^2logn)\) 首先我们有一个\(O(n^3)\)的 ...
- CF739E Gosha is hunting(费用流,期望)
根据期望的线性性答案就是捕捉每一只精灵的概率之和. 捕捉一只精灵的方案如下: 1.使用一个\(A\)精灵球,贡献为\(A[i]\) 2.使用一个\(B\)精灵球,贡献为\(B[i]\) 3.使用一个\ ...
- HZOJ 赤(CF739E Gosha is hunting)
本来没有打算写题解的,时间有点紧.但是这个wqs二分看了好久才明白还是写点东西吧. 题解就直接粘dg的了: 赤(red) 本题来自codeforces 739E,加大了数据范围. 首先对一只猫不会扔两 ...
- CF739E Gosha is hunting(费用流/凸优化dp)
纪念合格考爆炸. 其实这个题之前就写过博客了,qwq但是不小心弄丢了,所以今天来补一下. 首先,一看到球的个数的限制,不难相当用网络流的流量来限制每个球使用的数量. 由于涉及到最大化期望,所以要使用最 ...
- 【CF739E】Gosha is hunting 贪心
[CF739E]Gosha is hunting 题意:有n个小精灵,你有a个普通球和b个超级球,用普通球抓住第i只小精灵的概率为$A_i$,用超级球抓住第i只小精灵的概率为$u_i$.你必须一开始就 ...
- 【CF739E】Gosha is hunting(动态规划,凸优化)
[CF739E]Gosha is hunting(动态规划,凸优化) 题面 洛谷 CF 题解 一个\(O(n^3)\)的\(dp\)很容易写出来. 我们设\(f[i][a][b]\)表示前\(i\)个 ...
- 【CF739E】Gosha is hunting(WQS二分套WQS二分)
点此看题面 大致题意: 你有两种捕捉球(分别为\(A\)个和\(B\)个),要捕捉\(n\)个神奇宝贝,第\(i\)个神奇宝贝被第一种球捕捉的概率是\(s1_i\),被第二种球捕捉的概率是\(s2_i ...
- Codeforces739E Gosha is hunting
题意:现在有n个精灵,两种精灵球各m1和m2个,每个精灵单独使用第一种精灵球有pi的概率被捕获,单独使用第二种精灵球有ui的概率被捕获,同时使用有1-(1-pi)*(1-ui)的概率被捕获.一种精灵球 ...
随机推荐
- composer 下载包慢的解决方法
方法一: 修改 composer 的全局配置文件(推荐方式) 打开命令行窗口(windows用户)或控制台(Linux.Mac 用户)并执行如下命令: composer config -g repo. ...
- Chrome 75 & lazy-loading
Chrome 75 & lazy-loading https://addyosmani.com/blog/lazy-loading/ https://chromestatus.com/feat ...
- 开源 DotNetty 实现的 Modbus TCP/IP 协议
本项目的目的是为了学习 DotNetty 与 Modbus 协议,参考 modjn 实现功能 0x01: Read Coils (读取线圈/离散量输出状态) 0x02: Read Discrete I ...
- servlet篇 之 servlet的访问
三:servlet的访问 使用web.xml文件中的这个<url-pattern>标签中的映射路径,来访问servlet 6.1 在浏览器的地址栏中,直接输入servlet映射的路径来访问 ...
- url.openconnection() 设置超时时间
System.setProperty("sun.net.client.defaultConnectTimeout", "30000"); System.setP ...
- 【题解】K乘积
题目描述 有N个数,每个数的范围是[-50,50],现在你要从这N个数中选出K个,使得这K个数的乘积最大. 输入格式 第一行,N和K. 1 <= N <= 50. 1 <= K & ...
- fastjson 操作
1.String 转 bean String addition = ...; CoffeeFormula formula = JSON.parseObject(addition, new TypeRe ...
- shiro注解和标签
Controller中注解: @RequiresAuthentication @RequiresGuest @RequiresPermissions("account:create" ...
- [UOJ86]mx的组合数——NTT+数位DP+原根与指标+卢卡斯定理
题目链接: [UOJ86]mx的组合数 题目大意:给出四个数$p,n,l,r$,对于$\forall 0\le a\le p-1$,求$l\le x\le r,C_{x}^{n}\%p=a$的$x$的 ...
- P1035 调和级数
两种解法如下: 1.模拟 这种做法的思路是枚举n从1开始,直到Sn>k结束,只需要一个循环即可实现. 代码: #include<cstdio> int main() { ; scan ...