摘要

  EM算法全称为Expectation Maximization Algorithm,既最大期望算法。它是一种迭代的算法,用于含有隐变量的概率参数模型的最大似然估计和极大后验概率估计。EM算法经常用于机器学习和机器视觉的聚类领域,是一个非常重要的算法。而EM算法本身从使用上来讲并不算难,但是如果需要真正的理解则需要许多知识的相互串联。

引言

  EM算法是机器学习十大经典算法之一。EM算法既简单有复杂,简单的在于他的思想而复杂则在于他的数学推理和复杂的概率公式。作为我这个新手来讲,决定先捡大的部分,因此文章我们会更加着重概念的理解,至于公式的推导,在上过课以后其实也不是那么的困难,主要一点是你需要有非常扎实的数学功底,EM算法的推导过程基本上涵盖了我们前面所有讲到的数学知识。因此,如果看不懂EM算法大概是因为基础知识太弱了需要补习。

预备知识:

  贝叶斯网络、概率论与数理统计、凸优化

一、EM算法

  实际问题:随机挑选10000位志愿者,测量他们的身高:若样本中存在男性和女性,身高分别服从N(μ1,σ1)和N(μ2,σ2)的分布,试估计μ1,σ1,μ2,σ2。

  1、提出

  假定有训练集,包含m个独立样本,希望从中找到该组主句的模型的参数。

  2、建立目标函数

  我们利用极大似然估计来建立目标函数:,z是隐随机变量,不方便直接找到参数估计。

  策略:计算下界,求该下界的最大值;重复该过程,直到收敛到局部最大值。

  

  利用利用Jesenbu不等式,寻找尽量紧的下界,寻找尽量紧的下界。

  令是z的某一个分布,有:

    

  为了使等号成立:

  

  有:

  

  根据上述推导,有EM算法框架:

  E-step(求条件分布)

  

  M-step(求期望)

  

  相互迭代,求的

二、高斯混合模型GMM

  目的:随机变量X是有K个高斯分布混合而成,取各个高斯分布的概率为π1π2...πK,第i个高斯分布的均值为μi,方差为Σi。若观测到随机变量X的一系列样本x1,x2,...,xn,试估计参数π,μ,Σ。

  1、直观求解:

  对数似然函数:

   

  由于在对数函数里面又有加和,我们没法直接用求导解方程的办法直接求得极大值。为了解决这个问题,我们分成两步。

  第一步:估计数据由每个组份生成的概率

  对于每个样本xi,它由第k个组份生成的概率为:

  

  上式中的μ和Σ也是待估计的值,因此采样迭代法:在计算γ(i,k)时假定μ和Σ已知;γ(i,k)亦可看成组份k在生成数据xi时所做的贡献。

  第二步:估计每个组份的参数

  对于所有的样本点,对于组份k而言,可看做生成了这些点。组份k是一个标准的高斯分布,利用上面的结论:

  

  2、EM方法求解:

  E-step:

  

  M-step:将多项分布和高斯分布的参数带入

  

  对均值求偏导

  

  令上式等于0,解的均值:

  

  高斯分布的方差:求偏导,等于0

  

  详细参考:http://blog.csdn.net/zouxy09/article/details/8537620

机器学习之EM算法(五)的更多相关文章

  1. 斯坦福大学机器学习,EM算法求解高斯混合模型

    斯坦福大学机器学习,EM算法求解高斯混合模型.一种高斯混合模型算法的改进方法---将聚类算法与传统高斯混合模型结合起来的建模方法, 并同时提出的运用距离加权的矢量量化方法获取初始值,并采用衡量相似度的 ...

  2. 关于机器学习-EM算法新解

    我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂.简单在于它的思想,简单在于其仅包含了两个步骤就能完成强大的功能,复杂在于它的数学推理 ...

  3. 【机器学习】EM算法详细推导和讲解

    今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的 ...

  4. 【机器学习】--EM算法从初识到应用

    一.前述 Em算法是解决数学公式的一个算法,是一种无监督的学习. EM算法是一种解决存在隐含变量优化问题的有效方法.EM算法是期望极大(Expectation Maximization)算法的简称,E ...

  5. 机器学习笔记—EM 算法

    EM 算法所面对的问题跟之前的不一样,要复杂一些. EM 算法所用的概率模型,既含有观测变量,又含有隐变量.如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或贝叶斯估计法来估计 ...

  6. 机器学习:EM算法

    EM算法 各类估计 最大似然估计 Maximum Likelihood Estimation,最大似然估计,即利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值的计算过程. 直白来讲,就 ...

  7. 机器学习——EM算法

    1 数学基础 在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法 ...

  8. 机器学习五 EM 算法

    目录 引言 经典示例 EM算法 GMM 推导 参考文献: 引言 Expectation maximization (EM) 算法是一种非常神奇而强大的算法. EM算法于 1977年 由Dempster ...

  9. 简单易学的机器学习算法——EM算法

    简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系 ...

随机推荐

  1. Springboot 启动详解

    1.前言 最近一直在看Springboot和springcloud代码,看了将近20多天,对这两个系统的认知总算是入了门.后续应该会有一个系列的文章,本文就先从Springboot的启动入手. 2.容 ...

  2. 【MySQL经典案例分析】 Waiting for table metadata lock

    本文由云+社区发表 一. 问题是这样来的 ​ 2018年某个周末,接到连续数据库的告警,告警信息如下: 二. 苦逼的探索过程 1.总体的思路 看到too many connection的报错信息,基本 ...

  3. 【InfluxDB】InfluxDB学习实践笔记

    InfluxDB是用Go编写的一个开源分布式时序.事件和指标数据库,无需外部依赖.它与Elasticsearch.Graphite等类似.比较适用于与事件紧密相关的数据,例如实时日志数据.实时监控数据 ...

  4. 项目详解2—LVS负载均衡详解

    一.负载均衡集群介绍 1.集群 ① 集群(cluster)技术是一种较新的技术,通过集群技术,可以在付出较低成本的情况下获得在性能.可靠性.灵活性方面的相对较高的收益,其任务调度则是集群系统中的核心技 ...

  5. 【WebApi系列】浅谈HTTP在WebApi开发中的运用

    WebApi系列文章 [01]浅谈HTTP在WebApi开发中的运用 [02]聊聊WebApi体系结构 [03]详解WebApi参数的传递 [04]详解WebApi测试和PostMan [05]浅谈W ...

  6. npm设置和查看仓库源

    转载请注明出处:https://www.cnblogs.com/wenjunwei/p/10078460.html 在使用npm命令时,如果直接从国外的仓库下载依赖,下载速度很慢,甚至会下载不下来,我 ...

  7. Python中的序列操作

    官方手册:https://docs.python.org/3.7/library/stdtypes.html#sequence-types-list-tuple-range 序列简介 序列是指按照位置 ...

  8. 简化开发:Lombok的使用

    Java中优雅的使用Lombok 1.简介 Lombok 是一种 Java实用工具,可用来帮助开发人员消除Java的冗长,尤其是对于简单的Java对象(POJO), 它通过注释实现这一目的.一个标准的 ...

  9. “每日一道面试题”.Net中所有类的基类是以及包含的方法

    闲来无事,每日一贴.水平有限,大牛勿喷. .Net中所有内建类型的基类是System.Object毋庸置疑 Puclic Class A{}和 Public Class A:System.Object ...

  10. [nodejs] nodejs开发个人博客(一)准备工作

    前言 nodejs是运行在服务端的js,基于google的v8引擎.个人博客系统包含对数据库的增删查改,功能齐备,并且业务逻辑比较简单,是很多后台程序员为了检测学习成果,最先拿来练手的小网站程序.我也 ...