CodeForces1065F 树形dp
http://codeforces.com/problemset/problem/1065/F
你有一棵带有n个结点的树,根是结点1。有一个标记,最初在根结点处。你可以将标记移动到其他结点处。假设标记当前所在结点为v,你可以做出以下两种操作: 将标记移动到v子树的任一叶子处。 如果是结点v为叶子,则将标记向根移动不超过 k 次。换句话说,如果 h(v) 为结点 v 的深度 (根的深度为0),你可以将其移动到顶点 to ( to 为 v 祖先) 并且 h(v)−k≤h(to)。 根不是叶子(即使它的度数是 )。计算最多能访问多少叶子。 输入格式: 第一行包含两个整数 n 和 k (<k<n≤^) --- 树中的顶点数和向上移动的限制。 第二行包含 n-1个整数 第i个整数表示结点i+1的父亲 输入保证树合法,根为1。 输出格式: 输出一个整数,表示可以访问的最大叶子数。
题意
把问题想难了,想在树dp上同时用树状数组维护,然后一波操作把自己骚死了
一个显然的贪心思想是从1开始将所有可以拿的结点全部拿完之后返回1,然后进入下一个结点,这样每次遍历到根节点的结果都是最优的,判断拿结点的方法用树dp操作一下,用dfs进行预处理即可。
#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
inline int read(){int now=;register char c=getchar();for(;!isdigit(c);c=getchar());
for(;isdigit(c);now=now*+c-'',c=getchar());return now;}
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = 1e6 + ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,K;
struct Edge{
int to,next;
}edge[maxn * ];
int head[maxn],tot;
void init(){
memset(head,-,sizeof(int) * (N + ));
tot = ;
}
void addedge(int u,int v){
edge[tot].next = head[u];
edge[tot].to = v;
head[u] = tot++;
}
int dp[maxn],dp2[maxn];
void dfs(int t){
if(head[t] == -){
dp[t] = ; dp2[t] = K;
return;
}
dp[t] = ,dp2[t] = ;
for(int i = head[t]; ~i ; i = edge[i].next){
int v = edge[i].to;
dfs(v);
if(dp2[v]) dp[t] += dp[v];
dp2[t] = max(dp2[t],dp2[v] - );
}
}
int sum = ;
void DP(int t,int ans){
if(head[t] == -){
ans++;
sum = max(sum,ans);
}
for(int i = head[t]; ~i; i = edge[i].next){
int v = edge[i].to;
if(dp2[v]){
DP(v,ans + dp[t] - dp[v]);
}else{
DP(v,ans + dp[t]);
}
}
}
int main()
{
Sca2(N,K); init();
for(int i = ; i <= N; i ++){
int u; Sca(u);
addedge(u,i);
}
int root = ;
dfs();
DP(,);
Pri(sum);
#ifdef VSCode
system("pause");
#endif
return ;
}
CodeForces1065F 树形dp的更多相关文章
- poj3417 LCA + 树形dp
Network Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4478 Accepted: 1292 Descripti ...
- COGS 2532. [HZOI 2016]树之美 树形dp
可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...
- 【BZOJ-4726】Sabota? 树形DP
4726: [POI2017]Sabota? Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 128 Solved ...
- 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)
题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...
- 树形DP
切题ing!!!!! HDU 2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...
- BZOJ 2286 消耗战 (虚树+树形DP)
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...
- POJ2342 树形dp
原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式 ...
- hdu1561 The more, The Better (树形dp+背包)
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #i ...
- bzoj2500: 幸福的道路(树形dp+单调队列)
好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...
随机推荐
- Express学习(2) ------ 中间件
TJ Holowaychuck 将 “中间件”描述为易于挂载和调用的模块,可以“无序”使用,并有利于应用的快速开发. 1, 中间件是一个模块.在js中,模块意味着函数,所以中间件是一个函数.那么这个函 ...
- codeforces158C
Cd and pwd commands CodeForces - 158C Vasya is writing an operating system shell, and it should have ...
- Spring 使用介绍(十二)—— Spring Task
一.概述 1.jdk的线程池和任务调用器分别由ExecutorService.ScheduledExecutorService定义,继承关系如下: ThreadPoolExecutor:Executo ...
- JavaEE进阶集锦(持续更新中)
1.影响Servlet生命周期的注解:@PostConstruct和@PreDestroy @PostConstruct:被修饰的方法会在服务器加载Servlet的时候运行,并且只会被服务器调用一次, ...
- TP5.x——update更新成功但是返回是0
原因 更新的数据和表中的数据一致,这个官方文档上有说明的.所以大家使用这个语句的话需要注意 update 方法返回影响数据的条数,没修改任何数据返回 0 解决方法:我是进行了判断如何和数据库一致直接返 ...
- Git——取消merge状态
MERGING状态 取消MERGING 查看更新历史 $ git reflog 恢复之前状态 $ git reset --hard 06a5578
- 深度学习框架比较TensorFlow、Theano、Caffe、SciKit-learn、Keras
TheanoTheano在深度学习框架中是祖师级的存在.Theano基于Python语言开发的,是一个擅长处理多维数组的库,这一点和numpy很像.当与其他深度学习库结合起来,它十分适合数据探索.它为 ...
- 洛谷P4155 [SCOI2015]国旗计划(贪心,树形结构,基数排序)
洛谷题目传送门 \(O(n)\)算法来啦! 复杂度优化的思路是建立在倍增思路的基础上的,看看楼上几位巨佬的描述吧. 首先数组倍长是一样的.倍增法对于快速找到\(j\)满足\(l_j+m\le r_i\ ...
- P3613 睡觉困难综合征(LCT + 位运算)
题意 NOI2014 起床困难综合症 放在树上,加上单点修改与链上查询. 题解 类似于原题,我们只需要求出 \(0\) 和 \(2^{k - 1} - 1\) 走过这条链会变成什么值,就能确定每一位为 ...
- Codeforces 1079D Barcelonian Distance(计算几何)
题目链接:Barcelonian Distance 题意:给定方格坐标,方格坐标上有两个点A,B和一条直线.规定:直线上沿直线走,否则沿方格走.求A到B的最短距离. 题解:通过直线到达的:A.B两点都 ...