题目链接:CF1106F Lunar New Year and a Recursive Sequence

大意:已知\(f_1,f_2,\cdots,f_{k-1}\)和\(b_1,b_2,\cdots,b_k\),且有递推关系

\[f_i=(\prod_{j=1}^kf_{i-j}^{b_j})\text%p
\]

对于所有\(i>k\)均成立,给出\(f_n=m\),求\(f_k\),\(p=998244353\)

分析:

数论板子大集合

首先很显然有\(f_n=f_k^{q}\),于是考虑先求出这个\(q\)

看到\(k\leq100\)一般就会想到矩阵乘法之类的

但是这个式子的\(b\)处在乘方的位置,无法直接使用矩阵

注意到模数为998244353,其原根为3

那么我们就可以使用原根来改写这个转移

\[g_i=\prod_{j=1}^kg_{i-j}b_j
\]

这个是可以利用矩阵乘法的,初值\(g_i=0(i<k),g_k=1\)

我们于是可以利用矩乘找到这样的关系式:\(f_k^{q}\equiv f_n(mod\ p),q=g_n\)

这个玩意似乎可以类比的被定义为k次剩余,不过我们显然不会这个玩意

于是我们继续使用原根

我们知道\(f_n\)可以被写作\(3^t\),那么我们设\(f_k\)可以被写作为\(3^x\)

那么我们就是求满足这个式子的x值:\(3^{xq}\equiv3^t(mod\ p)\)

那么对于指数我们可以直接用exgcd,因为此时有\(xq\equiv t(mod\ p-1)\)

将m转为\(3^t\)时可以使用BSGS

问题就得到了解决QAQ

注意模数会在\(p-1\)和\(p\)之间切换,指数的模数为\(p-1\)(包括上面的矩乘),而在BSGS中的模数则为\(p\)

#include<iostream>
#include<string.h>
#include<string>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
using namespace std;
#define int long long
const int maxd=998244353,N=100000;
const double pi=acos(-1.0);
typedef long long ll;
int n,K,b[120],m; struct matrix{
ll x[120][120];
}ans,sum; matrix operator *(matrix a,matrix b)
{
matrix c;
memset(c.x,0,sizeof(c.x));
int i,j,k;
for (i=0;i<K;i++)
{
for (j=0;j<K;j++)
{
for (k=0;k<K;k++)
{
c.x[i][j]=(c.x[i][j]+a.x[i][k]*b.x[k][j])%(maxd-1);
}
}
}
return c;
} void qpow(int tim)
{
while (tim)
{
int tmp=tim&1;tim/=2;
if (tmp) ans=ans*sum;
sum=sum*sum;
}
} ll qpow(ll x,ll y)
{
ll ans=1,sum=x;
while (y)
{
int tmp=y&1;y/=2;
if (tmp) ans=(ans*sum)%maxd;
sum=(sum*sum)%maxd;
}
return ans;
} map<ll,ll> mp;
ll bsgs(int a,int b)
{
int siz=sqrt(maxd-1)+1,i;ll sum=b;
for (i=0;i<=siz;i++)
{
mp[sum]=i;
sum=(sum*a)%maxd;
}
ll tmp=qpow(a,siz);sum=1;
for (i=1;i<=siz;i++)
{
sum=(sum*tmp)%maxd;
if (mp[sum]) return i*siz-mp[sum];
}
} ll gcd(ll x,ll y)
{
if (!y) return x; else return gcd(y,x%y);
} void exgcd(ll a,ll b,ll &g,ll &x,ll &y)
{
if (!b) {x=1;y=0;g=a;return;}
else
{
ll tmpx,tmpy;
exgcd(b,a%b,g,tmpx,tmpy);
x=tmpy;y=tmpx-a/b*tmpy;
}
} int read()
{
int x=0,f=1;char ch=getchar();
while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
return x*f;
} signed main()
{
K=read();
int i,j;
for (i=0;i<K;i++) {ans.x[i][i]=1;sum.x[0][i]=read();}
for (i=0;i<K-1;i++) sum.x[i+1][i]=1;
ans.x[0][0]=1;
n=read();m=read();
qpow(n-K);
ll q=ans.x[0][0],p=bsgs(3,m);
//cout << q << " " << p << endl;
ll tmp=gcd(q,maxd-1);
if (p%tmp) {printf("-1");return 0;}
ll x,y,g;
exgcd(q,maxd-1,g,x,y);
x=(p/g*x)%(maxd-1);
if (x<0) x+=(maxd-1);
printf("%lld",qpow(3,x));
return 0;
}
/*
3
2 3 5
4 16
*/

CF1106F Lunar New Year and a Recursive Sequence的更多相关文章

  1. CF1106F Lunar New Year and a Recursive Sequence 原根、矩阵快速幂、BSGS

    传送门 好久没写数论题了写一次调了1h 首先发现递推式是一个乘方的形式,线性递推和矩阵快速幂似乎都做不了,那么是否能够把乘方运算变成加法运算和乘法运算呢? 使用原根!学过\(NTT\)的都知道\(99 ...

  2. CF1106F Lunar New Year and a Recursive Sequence 线性递推 + k次剩余

    已知\(f_i = \prod \limits_{j = 1}^k f_{i - j}^{b_j}\;mod\;998244353\),并且\(f_1, f_2, ..., f_{k - 1} = 1 ...

  3. CF1106F Lunar New Year and a Recursive Sequence(矩阵快速幂+bsgs+exgcd)

    题面 传送门 前置芝士 \(BSGS\) 什么?你不会\(BSGS\)?百度啊 原根 对于素数\(p\)和自然数\(a\),如果满足\(a^x\equiv 1\pmod{p}\)的最小的\(x\)为\ ...

  4. CF1106F Lunar New Year and a Recursive Sequence——矩阵快速幂&&bsgs

    题意 设 $$f_i = \left\{\begin{matrix}1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  i < k\\ ...

  5. Codeforces 1106F Lunar New Year and a Recursive Sequence | BSGS/exgcd/矩阵乘法

    我诈尸啦! 高三退役选手好不容易抛弃天利和金考卷打场CF,结果打得和shi一样--还因为queue太长而unrated了!一个学期不敲代码实在是忘干净了-- 没分该没分,考题还是要订正的 =v= 欢迎 ...

  6. Codeforces 1106F Lunar New Year and a Recursive Sequence (数学、线性代数、线性递推、数论、BSGS、扩展欧几里得算法)

    哎呀大水题..我写了一个多小时..好没救啊.. 数论板子X合一? 注意: 本文中变量名称区分大小写. 题意: 给一个\(n\)阶递推序列\(f_k=\prod^{n}_{i=1} f_{k-i}b_i ...

  7. @codeforces - 1106F@ Lunar New Year and a Recursive Sequence

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 定义递推数列 f: (1)f[1] = f[2] = ... f ...

  8. hdu 5950 Recursive sequence 矩阵快速幂

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  9. HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

随机推荐

  1. 开源后的.Net 如何选择使用

     .NET是跨平台的开发栈.它有一个标准库,称为.NET Standard Library,其中包含了大量的APIs.这个标准库由各种.NET运行环境实现:.NET Framework..NET Co ...

  2. flask异常处理

    对于异常,通常可以分为两类:一类是可以预知的异常,我们通常会用try...except....捕捉,第二类是未知的error,我们是无法预知的. try: code block except A: e ...

  3. Centos7 下SVN迁移

    SVN迁移需要做如下操作: 1. 将原来的Repository导出 . #svnadmin dump 原有repos的目录路径 > dumpfile (不同服务器安装目录不同,根据具体情况调整) ...

  4. Linux下php安装redis扩展(redis已经安装)

     1. 下载需要的php操作redis的扩展包 (1).切换到 cd  /usr/local/src (2).   wget https://github.com/nicolasff/phpredis ...

  5. iOS UICollectionView 在滚动时停在某个item位置上

    方法一:实现UIScrollView的代理,然后实现下面这个方法 #pragma mark - UIScrollViewDelegate//预计出大概位置,经过精确定位获得准备位置- (void)sc ...

  6. openstack-虚拟化模型

    一. 虚拟化模型 1.虚拟化模型 图1 虚拟化模型 图2 KVM架构 2.KVM模块 处理器虚化 内存虚化 3.QEMU设备模型 其它虚化(网卡.声卡.显卡等)

  7. tortoisegit密钥与git密钥配置

    在客户端生成密钥并将公钥上传到服务器可以避免每次连接git服务器都要登录的尴尬. 但git的私钥是不能直接用在tortoisegit上的,需要用tortoisegit的puttygen转换一下,详细过 ...

  8. 我的第一个Go web程序 纪念一下

    参考Go web编程,很简单的程序: 大致的步骤: 绑定ip和端口 绑定对应的处理器或者处理器函数,有下面两种选择,选择一种即可监听ip及端口 处理器: 定义一个struct结构体 然后让这个结构体实 ...

  9. js根据ip自动获取地址(省市区)

    HTML: <html> <head> <meta charset="utf-8"> <meta name="viewport& ...

  10. linux和sqlserver 2017的安装

    这两天一直在弄linux的安装过程.中间也遇到了不少的坑,主要是网络上的坑人的文章太多.都是坑,最后从redhat官网下载了iso文件,顺便看到官网推荐了一个fedora media writer的烤 ...