题目大意

  定义复数\(a+bi\)为整数\(k\)的约数,当且仅当\(a\)和\(b\)为整数且存在整数\(c\)和\(d\)满足\((a+bi)(c+di)=k\)。

  定义复数\(a+bi\)的实部为\(a\),虚部为\(b\)。

  定义\(f(n)\)为整数\(n\)的所有实部大于\(0\)的约数的实部之和。

  给定正整数\(n\),求出\(\sum_{i=1}^nf(i)\)对\(1004535809\)取模后得到的值。

  \(n\leq {10}^{10}\)

题解

  以前看到一个数论题就是反演预处理。

  现在看到一个数论题就是反演杜教筛。

  记\(s(n)=\sum_{i|n}i\)为\(n\)的因数和,\(S(n)=\sum_{i=1}^ns(i)\)

  当\(b=0\)时答案就是\(S(n)\)。以下仅考虑\(b>0\)的情况(\(b<0\)也是一样的)

  设\(n=(a+bi)(c+di)\),那么

\[\begin{cases}
ac-bd&=n\\
ad+bc&=0
\end{cases}\\
\frac{a}{b}=-\frac{c}{d}
\]

  因为这是一道数论题,设

\[\begin{align}
a&=px\\
b&=qx\\
c&=py\\
d&=-qy\\
\gcd(p,q)&=1\\
\end{align}
\]

  这样一组\(x,y,p,q\)就唯一确定了一组\(a,b,c,d\)

  记

\[\begin{align}
g(n)&=\sum_{p^2+q^2=n}[\gcd(p,q)=1]p\\
G(n)&=\sum_{i=1}^ng(i)\\
f(n)&=\sum_{p^2+q^2=n}p\\
F(n)&=\sum_{i=1}^nf(i)
\end{align}
\]

  问题转化为求

\[\begin{align}
&\sum_{x,y,p,q>0,[(p,q)=1]}[xy(p^2+q^2)\leq n]px\\
=&\sum_{i=1}^n(\sum_{p^2+q^2=i}[\gcd(p,q)=1]p)(\sum_{xy\leq\lfloor\frac{n}{i}\rfloor}x)\\
=&\sum_{i=1}^ng(i)S(\lfloor\frac{n}{i}\rfloor)
\end{align}
\]

  那么怎么求\(F,G,S\)呢?

\[\begin{align}
S(n)&=\sum_{i=1}^n\sum_{j|i}j\\
&=\sum_{i=1}^ni\lfloor\frac{n}{i}\rfloor\\
G(n)&=\sum_{p^2+q^2\leq n}p\\
&=\sum_{i=1}^\sqrt ni\lfloor\sqrt{n-i^2}\rfloor\\
F(n)&=\sum_{p^2+q^2\leq n}[\gcd(i,j)=1]p\\
&=\sum_{i=1}^\sqrt{n}i\mu(i)\sum_{j=1}^\frac{n}{i^2}\sum_{p^2+q^2\leq\frac{n}{i^2}}p\\
&=\sum_{i=1}^\sqrt{n}i\mu(i)G(\lfloor\frac{n}{i^2}\rfloor)
\end{align}
\]

  这些东西求一次是\(O(\sqrt{n})\)的,预处理一下,总的复杂度是\(O(n^\frac{2}{3})\),因为每个\(n\)都是题目给的\(n\)除以某个东西。

  预处理大家都会,我就不讲了。

  zjt:在\(O(n^\frac{2}{3})\)内求出所有\(F(n\)除以某个东西\()\)的一类算法都叫杜教筛。

  时间复杂度:\(O(n^\frac{2}{3})\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll p=1004535809;
int _gcd[3500][3500];
int gcd(int a,int b)
{
int &s=_gcd[a][b];
if(~s)
return s;
if(!b)
return s=a;
return s=gcd(b,a%b);
}
const int maxn=10000000;
ll n,m;
int vis[10000010];
ll f[10000010];
int miu[10000010];
int b[10000010];
int pri[1000010];
int cnt;
ll g1[10000010];
ll g2[10000010];
ll s[10000010];
int c[10000010];
void init()
{
int i,j;
for(i=1;i*i<=maxn;i++)
for(j=1;i*i+j*j<=maxn;j++)
{
if(gcd(i,j)==1)
(f[i*i+j*j]+=i)%=p;
(g1[i*i+j*j]+=i)%=p;
}
for(i=1;i<=maxn;i++)
{
f[i]=(f[i]+f[i-1])%p;
g1[i]=(g1[i]+g1[i-1])%p;
}
miu[1]=1;
c[1]=1;
s[1]=1;
for(i=2;i<=maxn;i++)
{
if(!b[i])
{
pri[++cnt]=i;
miu[i]=-1;
c[i]=i;
s[i]=i+1;
}
for(j=1;j<=cnt&&i*pri[j]<=maxn;j++)
{
b[i*pri[j]]=1;
if(i%pri[j]==0)
{
miu[i*pri[j]]=0;
c[i*pri[j]]=c[i]*pri[j];
if(c[i]==i)
s[i*pri[j]]=(s[i]*pri[j]+1)%p;
else
s[i*pri[j]]=s[c[i*pri[j]]]*s[i/c[i]]%p;
break;
}
miu[i*pri[j]]=-miu[i];
c[i*pri[j]]=pri[j];
s[i*pri[j]]=s[i]*(pri[j]+1)%p;
}
}
for(i=1;i<=maxn;i++)
s[i]=(s[i]+s[i-1])%p;
}
const ll inv2=502267905;
ll S(ll n)
{
if(n<=maxn)
return s[n];
ll s=0,s2;
ll i,j;
for(i=1;i<=n;i=j+1)
{
j=n/(n/i);
s=(s+(i+j)%p*(j-i+1)%p*inv2%p*((n/i)%p))%p;
}
return s;
}
ll G(ll n)
{
if(n<=maxn)
return g1[n];
if(vis[m/n]&2)
return g2[m/n];
vis[m/n]|=2;
ll i,s=0,j;
for(i=1;i*i<=n;i++);
j=i-1;
for(i=1;i*i<=n;i++)
{
while(j*j>n-i*i)
j--;
s=(s+i*j)%p;
}
g2[m/n]=s;
return s;
}
ll F(ll n)
{
if(n<=maxn)
return f[n];
ll i,s=0;
ll now;
for(i=1;i*i<=n;i++)
s=(s+miu[i]*i*G(n/i/i))%p;
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
#endif
memset(_gcd,-1,sizeof _gcd);
scanf("%lld",&n);
m=n;
init();
ll ans=0;
ll i,j;
ll last=0,now;
for(i=1;i<=n;i=j+1)
{
j=n/(n/i);
now=F(j);
ans=(ans+(now-last)%p*S(n/i))%p;
last=now;
}
ans=(ans*2+S(n))%p;
ans=(ans+p)%p;
printf("%lld\n",ans);
return 0;
}

【XSY2731】Div 数论 杜教筛 莫比乌斯反演的更多相关文章

  1. [bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)

    题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑N​j=1∑N​d(ij) ...

  2. BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演

    BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求 ...

  3. [CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]

    题面: 传送门 思路: 首先我们把区间缩小到$\left[\lfloor\frac{L-1}{K}\rfloor,\lfloor\frac{R}{K}\rfloor\right]$ 这道题的最特殊的点 ...

  4. [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)

    题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...

  5. bzoj 4916: 神犇和蒟蒻 (杜教筛+莫比乌斯反演)

    题目大意: 读入n. 第一行输出“1”(不带引号). 第二行输出$\sum_{i=1}^n i\phi(i)$. 题解: 所以说那个$\sum\mu$是在开玩笑么=.= 设$f(n)=n\phi(n) ...

  6. [51nod1220] 约数之和(杜教筛+莫比乌斯反演)

    题面 传送门 题解 嗯--还是懒得写了--这里 //minamoto #include<bits/stdc++.h> #define R register #define IT map&l ...

  7. 【BZOJ4176】Lucas的数论-杜教筛

    求$$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}f(ij)$$,其中$f(x)$表示$x$的约数个数,$0\leq n\leq 10^9$,答案膜$10^9+ ...

  8. bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演

    4176: Lucas的数论 Time Limit: 30 Sec  Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...

  9. BZOJ 4176: Lucas的数论 [杜教筛]

    4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...

随机推荐

  1. 剑指offer--1.二维数组中的查找

    题目:在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. ...

  2. 用HttpClient和用HttpURLConnection做爬虫发现爬取的代码少了的问题

    最近在学习用java来做爬虫但是发现不管用那种方式都是爬取的代码比网页的源码少了很多在网上查了很多都说是inputStream的缓冲区太小而爬取的网页太大导致读取出来的网页代码不完整,但是后面发现并不 ...

  3. 关于iframe页面里的重定向问题

    最近公司做的一个功能,使用了iframe,父页面内嵌子页面,里面的坑还挺多的,上次其实就遇到过,只不过今天在此描述一下. 请允许我画个草图: 外层大圈是父级页面,里层是子级页面,我们是在父级引用子级页 ...

  4. 初用Ajax

    早就有学习Ajax的想法了,但每次拿起一本Ajax的书,翻了不到百页就学不下去了,里面讲的东西实在太多了,前面讲javaScript的内容看了好 几遍都记不住,也就没心思去看后面的内容:看Ajax案例 ...

  5. YCSB报": No such file or directory"异常

    异常信息如下: 文件路径.权限都没有问题. 上网遍寻无果,安装流程与官网一致,开始怀疑是环境问题,后来用别人能用的YCSB复制到本地,却能正常运行. 后来修改了ycsb文件,加了个空格,保存退出,再运 ...

  6. scrapy之持久化存储

    scrapy之持久化存储 scrapy持久化存储一般有三种,分别是基于终端指令保存到磁盘本地,存储到MySQL,以及存储到Redis. 基于终端指令的持久化存储 scrapy crawl xxoo - ...

  7. awk+sed编程

  8. Ubuntu端口开放

    一.关于iptable的介绍 维基百科:https://zh.wikipedia.org/wiki/Iptables 注意:iptables的操作需要root权限 二.具体操作 sudo apt-ge ...

  9. ESLint常见命令(规则表)

    1 禁用 ESLint: /* eslint-disable */ ; console.log(a); /* eslint-enable */ 2 禁用一条规则: /*eslint-disable n ...

  10. React Native之图片保存到本地相册(ios android)

    React Native之图片保存到本地相册(ios android) 一,需求分析 1,react native保存网络图片到相册,iOS端可以用RN自带的CameraRoll完美解决,但是andr ...