LOJ6436 [PKUSC2018] 神仙的游戏 【FFT】
题目分析:
题目要求前后缀相同,把串反过来之后是一个很明显的卷积的形式。这样我们可以完成初步判断(即可以知道哪些必然不行)。
然后考虑一下虽然卷积结果成立,但是存在问号冲突的情况。
箭头之间应当不存在1。不然就和图上所画的一样。注意到它每隔len个跳一次,所以相当于调和级数,利用原有信息判断即可。
字符串转化的方式有很多种。
代码:
#include<bits/stdc++.h>
using namespace std; const int maxn = (<<)+; const int mod = ;
const int gg = ; char str[maxn]; int n,m,len,a[maxn<<],b[maxn<<],ord[maxn<<]; int f[maxn<<],iv; int fast_pow(int now,int pw){
int ans = ,dd = now,bit = ;
while(bit <= pw){
if(bit & pw) {ans = (1ll*ans*dd)%mod;}
dd = (1ll*dd*dd)%mod;
bit<<=;
}
return ans;
} void fft(int *d,int dr){
for(register int i=;i<m;i++) if(i < ord[i]) swap(d[i],d[ord[i]]);
for(register int i=;i<m;i<<=){
int wn = fast_pow(gg,(mod-)/(*i));
if(dr == -) wn = fast_pow(wn,mod-);
for(register int j=;j<m;j+=(i<<)){
for(register int k=,w=;k<i;k++,w = (1ll*w*wn)%mod){
int x = d[j+k],y = (1ll*w*d[j+k+i])%mod;
d[j+k] = x+y; d[j+k] >=mod?d[j+k]-=mod:;
d[j+k+i] = x-y;
d[j+k+i] < ?d[j+k+i]+=mod:;
}
}
}
if(dr == -){
for(register int i=;i<m;i++) d[i] = (1ll*d[i]*iv)%mod;
}
} void work(){
int n = strlen(str);m = ;
while(m < *n){m<<=;len++;} iv = fast_pow(m,mod-);
for(register int i=;i<m;i++) ord[i] = (ord[i>>]>>)+((i&)<<len-); for(register int i=;i<n;i++) {
if(str[i] == '') a[i] = ;
else if(str[i] == '') b[n-i-] = ;
} fft(a,); fft(b,);
for(register int i=;i<m;i++) {
f[i] = (1ll*a[i]*b[i])%mod;
} memset(a,,sizeof(a)); memset(b,,sizeof(b)); for(register int i=;i<n;i++) {
if(str[i] == '') a[i] = ;
else if(str[i] == '') b[n-i-] = ;
} fft(a,); fft(b,);
for(register int i=;i<m;i++) {
f[i] += (1ll*a[i]*b[i])%mod; if(f[i] >mod)f[i]-=mod;
} fft(f,-); for(register int i=;i<n-;i++){
int now = n--i;
for(register int j=i-now;j>=;j-=now){
f[i] |= f[j];
}
} long long ans = ;
for(register int i=;i<=n;i++){
ans ^= (1ll*(f[i-]==)*i*i);
}
printf("%lld",ans);
} int main(){
scanf("%s",str);
work();
return ;
}
LOJ6436 [PKUSC2018] 神仙的游戏 【FFT】的更多相关文章
- [LOJ6436][PKUSC2018]神仙的游戏
loj description 给你一个只有01和?的字符串,问你是否存在一种把?改成01的方案使串存在一个长度为\(1-n\)的\(border\).\(n\le5\times10^5\) sol ...
- [PKUSC2018]神仙的游戏(FFT)
给定一个01?串,对所有len询问是否存在一种填法使存在长度为len的border. 首先有个套路的性质:对于一个长度为len的border,这个字符串一定有长度为n-len的循环节(最后可以不完整) ...
- BZOJ5372: [Pkusc2018]神仙的游戏
BZOJ5372: [Pkusc2018]神仙的游戏 https://lydsy.com/JudgeOnline/problem.php?id=5372 分析: 如果\(len\)为\(border\ ...
- BZOJ5372: PKUSC2018神仙的游戏
传送门 Sol 自己还是太 \(naive\) 了,上来就构造多项式和通配符直接匹配,然后遇到 \(border\) 相交的时候就 \(gg\) 了 神仙的游戏蒟蒻还是玩不来 一个小小的性质: 存在长 ...
- bzoj 5372: [Pkusc2018]神仙的游戏
Description 小D和小H是两位神仙.他们经常在一起玩神仙才会玩的一些游戏,比如"口算一个4位数是不是完全平方数". 今天他们发现了一种新的游戏:首先称s长度为len的前缀 ...
- loj 6436 PKUSC2018 神仙的游戏
传送门 好妙蛙 即串\(s\)长度为\(n\)首先考虑如果一个长度为\(len\)的\(border\)存在,当且仅当对所有\(i\in[1,len],s[i]=s[n-len+i]\),也就是所有模 ...
- [PKUSC2018]神仙的游戏
题目 画一画就会发现一些奇诡的性质 首先如果\(len\)为一个\(\operatorname{border}\),那么必然对于\(\forall i\in [1,len]\),都会有\(s_i=s_ ...
- BZOJ5372 PKUSC2018神仙的游戏(NTT)
首先有一个想法,翻转串后直接卷积看有没有0匹配上1.但这是必要而不充分的因为在原串和翻转串中?不能同时取两个值. 先有一些结论: 如果s中长度为len的前缀是border,那么其存在|s|-len的循 ...
- 【LOJ6436】【PKUSC2018】神仙的游戏(NTT)
[LOJ6436][PKUSC2018]神仙的游戏(NTT) 题面 LOJ 题解 看到\(zsy\)从\(PKUSC\)回来就秒掉了这种神仙题 吓得我也赶快看了看\(PKUSC\)都有些什么神仙题 然 ...
随机推荐
- iOS开发简记(9):APPStore审核
"觅知音"这个APP的第一个版本从提交审核到上架,历时三个星期,其中遇到一些审核上的问题,它的处理或许能帮助到遇到同样问题的小伙伴们,所以这里列举出来,这三个星期如何跟苹果的审核团 ...
- python--Numpy and Pandas 笔记01
博客地址:http://www.cnblogs.com/yudanqu/ 1 import numpy as np import pandas as pd from pandas import Ser ...
- Python requests 多线程抓取 出现HTTPConnectionPool Max retires exceeded异常
https://segmentfault.com/q/1010000000517234 -- ::, - oracle - ERROR - data format error:HTTPConnecti ...
- Factors of Factorial AtCoder - 2286 (N的阶乘的因子个数)(数论)
Problem Statement You are given an integer N. Find the number of the positive divisors of N!, modulo ...
- MySQL复制表的方式以及原理和流程
复制表的俩种方式: 第一.只复制表结构到新表 create table 新表 select * from 旧表 where 1=2 或者 create table 新表 like 旧表 第二.复制表结 ...
- Day9 Python基础之函数基础(七)
参考链接:https://www.cnblogs.com/yuanchenqi/articles/5828233.html 1.函数的定义 定义: 函数是指将一组语句的集合通过一个函数名封装起来,要想 ...
- iOS数据存储-钥匙串存储
2017.11.20 14:41* 字数 227 阅读 678评论 0喜欢 0 钥匙串介绍 1. 表示设备唯一号的标识,在IOS7中要么被禁止使用,要么重新安装程序后两次获取的标识符不一样. 2. ...
- ad2017安装以及破解
1.破Ad破解https://wenku.baidu.com/view/5e23a78e2e3f5727a5e962dd.html 2. Ad 汉化https://jingyan.baidu.com/ ...
- centos6.7用yum安装redis解决办法及IP限制配置
在centos6.7用yum安装redis解决办法 - bluesky1 - 博客园 http://www.cnblogs.com/lanblogs/p/6104834.html yum instal ...
- Mongo安装与使用
MongoDB[1] 是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. mongoDB MongoDB[2] 是一个介于关系数据库和非关系数 ...