Python中pandas模块解析
Pandas基于两种数据类型: series 与 dataframe 。
1、Series
一个series是一个一维的数据类型,其中每一个元素都有一个标签。类似于Numpy中元素带标签的数组。其中,标签可以是数字或者字符串。
import numpy as np
import pandas as pd
s = pd.Series([1, 2, 5, np.nan, 6, 8])
print(s)
输出:
0 1.0
1 2.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64
2、DataFrame
一个dataframe是一个二维的表结构。Pandas的dataframe可以存储许多种不同的数据类型,并且每一个坐标轴都有自己的标签。你可以把它想象成一个series的字典项。
创建一个 DateFrame:
#创建日期索引序列
dates =pd.date_range('20130101', periods=6)
print(type(dates))
#创建Dataframe,其中 index 决定索引序列,columns 决定列名
df =pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
print(df)
输出:
<class 'pandas.core.indexes.datetimes.DatetimeIndex'>
A B C D
2013-01-01 0.406575 -1.356139 0.188997 -1.308049
2013-01-02 -0.412154 0.123879 0.907458 0.201024
2013-01-03 0.576566 -1.875753 1.967512 -1.044405
2013-01-04 1.116106 -0.796381 0.432589 0.764339
2013-01-05 -1.851676 0.378964 -0.282481 0.296629
2013-01-06 -1.051984 0.960433 -1.313190 -0.093666
字典创建 DataFrame
df2 =pd.DataFrame({'A' : 1.,
'B': pd.Timestamp('20130102'),
'C': pd.Series(1,index=list(range(4)),dtype='float32'),
'D': np.array([3]*4,dtype='int32'),
'E': pd.Categorical(["test","train","test","train"]),
'F':'foo' })
print(df2)
输出:
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
1. 导入模块
import pandas as pd
import numpy as np
2. 读取excel文件
df = pd.read_csv(path='file.csv')
参数:header=None 用默认列名,0,1,2,3...
names=['A', 'B', 'C'...] 自定义列名
index_col='A'|['A', 'B'...] 给索引列指定名称,如果是多重索引,可以传list
skiprows=[0,1,2] 需要跳过的行号,从文件头0开始,skip_footer从文件尾开始
nrows=N 需要读取的行数,前N行
chunksize=M 返回迭代类型TextFileReader,每M条迭代一次,数据占用较大内存时使用
sep=':'数据分隔默认是',',根据文件选择合适的分隔符,如果不指定参数,会自动解析
skip_blank_lines=False 默认为True,跳过空行,如果选择不跳过,会填充NaN
converters={'col1', func} 对选定列使用函数func转换,通常表示编号的列会使用(避免转换成int)
dfjs = pd.read_json('file.json') 可以传入json格式字符串
dfex = pd.read_excel('file.xls', sheetname=[0,1..]) 读取多个sheet页,返回多个df的字典
3. 查询数据
df.shape #显示数据的多少行和多少列
df.dtypes #显示数据的格式
df.columns #显示数据的所有列名
df.head(n) #显示数据的前n=5行
df.tail(n) #显示数据的后n=5行
df.head(1)[‘date’] #获取第一行的date列
df.head(1)[‘date’][0] #获取第一行的date列的元素值
df.describe(include='all') # all代表需要将所有列都列出
df.columns.tolist() #把列名转换为list
df.T #对数据的转置:
df.notnull() #df的非空值为True
df.isnull() #isnull是Python中检验空值的函数,返回的结果是逻辑值,包含空值返回True,不包含则返回False。可以对整个数据表进行检查,也可以单独对某一列进行空值检查。
df[“列名”] #返回这一列(“列名”)的数据
df[[“name”,”age”]] #返回列名为name和 age的两列数据
df[‘列字段名’].unique() #显示数据某列的所有唯一值, 有0值是因为对数据缺失值进行了填充
df = pd.read_excel(file,skiprows=[2] ) #不读取哪里数据,可用skiprows=[i],跳过文件的第i行不读取
df.loc[0] #使用loc[]方法来选择第一行的数据
df.loc[0][“name”] #使用loc[]方法来选择第一行且列名为name的数据
df.loc[2:4] #返回第3行到第4行的数据
df.loc[[2,5,10]] #返回行标号为2,5,10三行数据,注意必须是由列表包含起来的数据。
df.loc[:,’test1’] #获取test1的那一列,这个冒号的意思是所有行,逗号表示行与列的区分
df.loc[:,[‘test1’,’test2’]] #获取test1列和test2列的数据
df.loc[1,[‘test1’,’test2’]] #获取第二行的test1和test2列的数据
df.at[1,’test1’] #表示取第二行,test1列的数据,和上面的方法类似
df.iloc[0] #获取第一行
df.iloc[0:2,0:2] #获取前两行前两列的数据
df.iloc[[1,2,4],[0,2]] #获取第1,2,4行中的0,2列的数据
Python中pandas模块解析的更多相关文章
- Python中csv模块解析
导入模块 import csv 2.读取csv文件 file1 = open('test1.csv', 'rb') reader = csv.reader(file1) rows = [row for ...
- Python中matplotlib模块解析
用Matplotlib绘制二维图像的最简单方法是: 1. 导入模块 导入matplotlib的子模块 import matplotlib.pyplot as plt import numpy as ...
- Python中xlrd模块解析
xlrd 导入模块 import xlrd 2.打开指定的excel文件,返回一个data对象 data = xlrd.open_workbook(file) ...
- Python中optionParser模块的使用方法[转]
本文以实例形式较为详尽的讲述了Python中optionParser模块的使用方法,对于深入学习Python有很好的借鉴价值.分享给大家供大家参考之用.具体分析如下: 一般来说,Python中有两个内 ...
- Python中的模块介绍和使用
在Python中有一个概念叫做模块(module),这个和C语言中的头文件以及Java中的包很类似,比如在Python中要调用sqrt函数,必须用import关键字引入math这个模块,下面就来了解一 ...
- python中导入模块的本质, 无法导入手写模块的解决办法
最近身边一些朋友发生在项目当中编写自己模块,导入的时候无法导入的问题. 下面我来分享一下关于python中导入模块的一些基本知识. 1 导入模块时寻找路径 在每一个运行的python程序当中,都维护了 ...
- python中argparse模块用法实例详解
python中argparse模块用法实例详解 这篇文章主要介绍了python中argparse模块用法,以实例形式较为详细的分析了argparse模块解析命令行参数的使用技巧,需要的朋友可以参考下 ...
- python 历险记(五)— python 中的模块
目录 前言 基础 模块化程序设计 模块化有哪些好处? 什么是 python 中的模块? 引入模块有几种方式? 模块的查找顺序 模块中包含执行语句的情况 用 dir() 函数来窥探模块 python 的 ...
- Python中ConfigParser模块应用
Python中ConfigParser模块应用 Python的ConfigParser模块定义了3个对INI文件进行操作的类 RawConfigParser.ConfigParser和SafeConf ...
随机推荐
- developer的996,需要谁来拯救
不为996辩护,但向奋斗者致敬! 随着996.icu愈演愈烈,不仅是国际友人发文问候,连国内互联网的大佬都被卷进风波,整理下大致思路如下: 马云:因为有自己想要实现的目标,因为有奔头,所以我们努力工作 ...
- position fixed 相对于父级定位
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Python全栈开发之路 【第三篇】:Python基础之字符编码和文件操作
本节内容 一.三元运算 三元运算又称三目运算,是对简单的条件语句的简写,如: 简单条件语句: if 条件成立: val = 1 else: val = 2 改成三元运算: val = 1 if 条件成 ...
- Centos7修改系统时区
timedatectl status Local time: 四 2014-12-25 10:52:10 CST Universal time: 四 2014-12-25 02:52:10 UTC R ...
- Jenkins-job之间依赖关系配置
使用场景: 想要在某APP打新包之后,立即执行自动化测试的job来验证该新包. 比如Job A 执行完执行Job B ,如下图所示,如何建立依赖呢? 1.配置上游依赖 构建触发器-配置如下信息: 选择 ...
- vue及Eelement使用过程中遇到的一些问题
在做项目的过程中,目前主要遇到了以下几个问题: 一.样式问题 1.样式中使用scoped的问题: 主要表现在从一个页面跳到另一个页面时,第二个页面的样式不能正确显示,通过刷新才能恢复页面的预定样式. ...
- HDU - 1698 线段树区间修改,区间查询
这就是很简单的基本的线段树的基本操作,区间修改,区间查询,对区间内部信息打上laze标记,然后维护即可. 我自己做的时候太傻逼了...把区间修改写错了,对给定区间进行修改的时候,mid取的是节点的左右 ...
- PYTHON访问数据库
PYTHON DB API(规范)框架 可以一次编写同时访问MySql\ Oracle \SQLServer...不同的数据库服务器:统一接口程序的混乱. 1.连接访问:connection(高速路) ...
- Individual Project "写一个能自动生成小学四则运算题目的程序"
一.题目简介 写一个能自动生成小学四则运算题目的程序. 初步拟定要实现的功能后,估计一下自己需要花多长时间.编程过程中记录自己实际用了多长时间. 然后和同学们比较一下各自程序的功能.实现方法的异同等等 ...
- Nginx三部曲(1)基础
我们会告诉你 Nginx 是如何工作的,其背后的概念有哪些,以及如何优化它以提升应用程序的性能.还会告诉你如何安装,如何启动.运行. 这个教程包括三节: 基础概念——你可以了解命令(directive ...