Pandas基于两种数据类型: series 与 dataframe 。

1、Series

一个series是一个一维的数据类型,其中每一个元素都有一个标签。类似于Numpy中元素带标签的数组。其中,标签可以是数字或者字符串。

import numpy as np

import pandas as pd

s = pd.Series([1, 2, 5, np.nan, 6, 8])

print(s)

输出:

0    1.0

1    2.0

2    5.0

3    NaN

4    6.0

5    8.0

dtype: float64

2、DataFrame

一个dataframe是一个二维的表结构。Pandas的dataframe可以存储许多种不同的数据类型,并且每一个坐标轴都有自己的标签。你可以把它想象成一个series的字典项。

创建一个 DateFrame:

#创建日期索引序列

dates =pd.date_range('20130101', periods=6)

print(type(dates))

#创建Dataframe,其中 index 决定索引序列,columns 决定列名

df =pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))

print(df)

输出:

<class 'pandas.core.indexes.datetimes.DatetimeIndex'>

A         B         C         D

2013-01-01  0.406575 -1.356139  0.188997 -1.308049

2013-01-02 -0.412154  0.123879  0.907458  0.201024

2013-01-03  0.576566 -1.875753  1.967512 -1.044405

2013-01-04  1.116106 -0.796381  0.432589  0.764339

2013-01-05 -1.851676  0.378964 -0.282481  0.296629

2013-01-06 -1.051984  0.960433 -1.313190 -0.093666

字典创建 DataFrame

df2 =pd.DataFrame({'A' : 1.,

'B': pd.Timestamp('20130102'),

'C': pd.Series(1,index=list(range(4)),dtype='float32'),

'D': np.array([3]*4,dtype='int32'),

'E': pd.Categorical(["test","train","test","train"]),

'F':'foo' })

print(df2)

输出:

A          B    C  D      E    F

0  1.0 2013-01-02  1.0  3   test  foo

1  1.0 2013-01-02  1.0  3  train  foo

2  1.0 2013-01-02  1.0  3   test  foo

3  1.0 2013-01-02  1.0  3  train  foo

1.  导入模块

import pandas as pd

import numpy as np

2.  读取excel文件

df = pd.read_csv(path='file.csv')

参数:header=None 用默认列名,0,1,2,3...

names=['A', 'B', 'C'...] 自定义列名

index_col='A'|['A', 'B'...] 给索引列指定名称,如果是多重索引,可以传list

skiprows=[0,1,2] 需要跳过的行号,从文件头0开始,skip_footer从文件尾开始

nrows=N 需要读取的行数,前N行

chunksize=M 返回迭代类型TextFileReader,每M条迭代一次,数据占用较大内存时使用

sep=':'数据分隔默认是',',根据文件选择合适的分隔符,如果不指定参数,会自动解析

skip_blank_lines=False 默认为True,跳过空行,如果选择不跳过,会填充NaN

converters={'col1', func} 对选定列使用函数func转换,通常表示编号的列会使用(避免转换成int)

dfjs = pd.read_json('file.json') 可以传入json格式字符串

dfex = pd.read_excel('file.xls', sheetname=[0,1..]) 读取多个sheet页,返回多个df的字典

3.     查询数据

df.shape                        #显示数据的多少行和多少列

df.dtypes                       #显示数据的格式

df.columns                      #显示数据的所有列名

df.head(n)                      #显示数据的前n=5行

df.tail(n)                      #显示数据的后n=5行

df.head(1)[‘date’]            #获取第一行的date列

df.head(1)[‘date’][0]         #获取第一行的date列的元素值

df.describe(include='all')      # all代表需要将所有列都列出

df.columns.tolist()             #把列名转换为list

df.T                            #对数据的转置:

df.notnull()                    #df的非空值为True

df.isnull()                     #isnull是Python中检验空值的函数,返回的结果是逻辑值,包含空值返回True,不包含则返回False。可以对整个数据表进行检查,也可以单独对某一列进行空值检查。

df[“列名”]                    #返回这一列(“列名”)的数据

df[[“name”,”age”]]      #返回列名为name和 age的两列数据

df[‘列字段名’].unique()   #显示数据某列的所有唯一值, 有0值是因为对数据缺失值进行了填充

df = pd.read_excel(file,skiprows=[2] )      #不读取哪里数据,可用skiprows=[i],跳过文件的第i行不读取

df.loc[0]              #使用loc[]方法来选择第一行的数据

df.loc[0][“name”]     #使用loc[]方法来选择第一行且列名为name的数据

df.loc[2:4]             #返回第3行到第4行的数据

df.loc[[2,5,10]]        #返回行标号为2,5,10三行数据,注意必须是由列表包含起来的数据。

df.loc[:,’test1’]     #获取test1的那一列,这个冒号的意思是所有行,逗号表示行与列的区分

df.loc[:,[‘test1’,’test2’]]     #获取test1列和test2列的数据

df.loc[1,[‘test1’,’test2’]]     #获取第二行的test1和test2列的数据

df.at[1,’test1’]      #表示取第二行,test1列的数据,和上面的方法类似

df.iloc[0]              #获取第一行

df.iloc[0:2,0:2]        #获取前两行前两列的数据

df.iloc[[1,2,4],[0,2]] #获取第1,2,4行中的0,2列的数据

Python中pandas模块解析的更多相关文章

  1. Python中csv模块解析

    导入模块 import csv 2.读取csv文件 file1 = open('test1.csv', 'rb') reader = csv.reader(file1) rows = [row for ...

  2. Python中matplotlib模块解析

    用Matplotlib绘制二维图像的最简单方法是: 1.  导入模块 导入matplotlib的子模块 import matplotlib.pyplot as plt import numpy as ...

  3. Python中xlrd模块解析

    xlrd 导入模块 import xlrd 2.打开指定的excel文件,返回一个data对象 data = xlrd.open_workbook(file)                     ...

  4. Python中optionParser模块的使用方法[转]

    本文以实例形式较为详尽的讲述了Python中optionParser模块的使用方法,对于深入学习Python有很好的借鉴价值.分享给大家供大家参考之用.具体分析如下: 一般来说,Python中有两个内 ...

  5. Python中的模块介绍和使用

    在Python中有一个概念叫做模块(module),这个和C语言中的头文件以及Java中的包很类似,比如在Python中要调用sqrt函数,必须用import关键字引入math这个模块,下面就来了解一 ...

  6. python中导入模块的本质, 无法导入手写模块的解决办法

    最近身边一些朋友发生在项目当中编写自己模块,导入的时候无法导入的问题. 下面我来分享一下关于python中导入模块的一些基本知识. 1 导入模块时寻找路径 在每一个运行的python程序当中,都维护了 ...

  7. python中argparse模块用法实例详解

    python中argparse模块用法实例详解 这篇文章主要介绍了python中argparse模块用法,以实例形式较为详细的分析了argparse模块解析命令行参数的使用技巧,需要的朋友可以参考下 ...

  8. python 历险记(五)— python 中的模块

    目录 前言 基础 模块化程序设计 模块化有哪些好处? 什么是 python 中的模块? 引入模块有几种方式? 模块的查找顺序 模块中包含执行语句的情况 用 dir() 函数来窥探模块 python 的 ...

  9. Python中ConfigParser模块应用

    Python中ConfigParser模块应用 Python的ConfigParser模块定义了3个对INI文件进行操作的类 RawConfigParser.ConfigParser和SafeConf ...

随机推荐

  1. developer的996,需要谁来拯救

    不为996辩护,但向奋斗者致敬! 随着996.icu愈演愈烈,不仅是国际友人发文问候,连国内互联网的大佬都被卷进风波,整理下大致思路如下: 马云:因为有自己想要实现的目标,因为有奔头,所以我们努力工作 ...

  2. position fixed 相对于父级定位

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. Python全栈开发之路 【第三篇】:Python基础之字符编码和文件操作

    本节内容 一.三元运算 三元运算又称三目运算,是对简单的条件语句的简写,如: 简单条件语句: if 条件成立: val = 1 else: val = 2 改成三元运算: val = 1 if 条件成 ...

  4. Centos7修改系统时区

    timedatectl status Local time: 四 2014-12-25 10:52:10 CST Universal time: 四 2014-12-25 02:52:10 UTC R ...

  5. Jenkins-job之间依赖关系配置

    使用场景: 想要在某APP打新包之后,立即执行自动化测试的job来验证该新包. 比如Job A 执行完执行Job B ,如下图所示,如何建立依赖呢? 1.配置上游依赖 构建触发器-配置如下信息: 选择 ...

  6. vue及Eelement使用过程中遇到的一些问题

    在做项目的过程中,目前主要遇到了以下几个问题: 一.样式问题 1.样式中使用scoped的问题: 主要表现在从一个页面跳到另一个页面时,第二个页面的样式不能正确显示,通过刷新才能恢复页面的预定样式. ...

  7. HDU - 1698 线段树区间修改,区间查询

    这就是很简单的基本的线段树的基本操作,区间修改,区间查询,对区间内部信息打上laze标记,然后维护即可. 我自己做的时候太傻逼了...把区间修改写错了,对给定区间进行修改的时候,mid取的是节点的左右 ...

  8. PYTHON访问数据库

    PYTHON DB API(规范)框架 可以一次编写同时访问MySql\ Oracle \SQLServer...不同的数据库服务器:统一接口程序的混乱. 1.连接访问:connection(高速路) ...

  9. Individual Project "写一个能自动生成小学四则运算题目的程序"

    一.题目简介 写一个能自动生成小学四则运算题目的程序. 初步拟定要实现的功能后,估计一下自己需要花多长时间.编程过程中记录自己实际用了多长时间. 然后和同学们比较一下各自程序的功能.实现方法的异同等等 ...

  10. Nginx三部曲(1)基础

    我们会告诉你 Nginx 是如何工作的,其背后的概念有哪些,以及如何优化它以提升应用程序的性能.还会告诉你如何安装,如何启动.运行. 这个教程包括三节: 基础概念——你可以了解命令(directive ...