Lecture 4 最优化

课程内容记录:

(上)https://zhuanlan.zhihu.com/p/21360434?refer=intelligentunit

(下)https://zhuanlan.zhihu.com/p/21387326?refer=intelligentunit

1.代码注释:

numpy.random.randn()

numpy.random.randn(d0,d1,…,dn):rand函数返回一个或一组样本,具有标准正态分布。。dn对应每个维度,函数返回值为指定维度的array。

具体用法参见:https://blog.csdn.net/u012149181/article/details/78913167

float("inf") 正无穷。

2.关于梯度:

数值梯度是利用有限差分法代入一个具体的较小值,利用公式求得对应的梯度,这个梯度值是近似的,近似程度取决于你的较小值的大小。它的优点是代码容易实现。解析梯度是利用微分直接求解梯度,优点是精确求解,解析速度快,但是有时候会出错。在debug的时候,为了检验公式的正确性,数值梯度往往是一个很好的工具,由于计算速度很慢,你可能需要适当减少参数的数量,这是一个非常好的调试策略。

注:学习率是一个很重要的超参数,在训练网络时往往是第一个需要检查的超参数,关于模型大小和正则化强度的检查往往在其之后进行。

注:交互网页项目网址(很好用,就不加以说明了):

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

3.深度神经网络之前:

将像素直接输入线性分类器不是一个明智的选择,因为这样的模型无法分辨多模态等图片的特征,且总由背景等像素占比多的区域决定分类结果。在深度神经网络大规模运用之前,常用的方式是计算图片各种特征代表(feature representation),例如一些与图片形象特征有关的数值构成特征向量,然后将不同的特征向量合在一起,得到图像的特征表述,再将这些特征表述传入线性分类器。这种模型可以得到图片的转换特征(比如得到颜色频数直方图,或者边缘方向直方图),将某些原本线性不可分的图片特征变为线性可分的,从而可以有线性分类器进行分类。如今的深度学习网络主要的区别就是网络可以利用卷积层等结构自行学习特征,不再需要人工提取输入特征。

Cs231n课堂内容记录-Lecture 3 最优化的更多相关文章

  1. Cs231n课堂内容记录-Lecture 4-Part2 神经网络

    Lecture 7 神经网络二 课程内容记录:https://zhuanlan.zhihu.com/p/21560667?refer=intelligentunit 1.协方差矩阵: 协方差(Cova ...

  2. Cs231n课堂内容记录-Lecture 4-Part1 反向传播及神经网络

     反向传播 课程内容记录:https://zhuanlan.zhihu.com/p/21407711?refer=intelligentunit 雅克比矩阵(Jacobian matrix) 参见ht ...

  3. Cs231n课堂内容记录-Lecture 6 神经网络训练

    Lecture 6  Training Neural Networks 课堂笔记参见:https://zhuanlan.zhihu.com/p/22038289?refer=intelligentun ...

  4. Cs231n课堂内容记录-Lecture 8 深度学习框架

    Lecture 8  Deep Learning Software 课堂笔记参见:https://blog.csdn.net/u012554092/article/details/78159316 今 ...

  5. Cs231n课堂内容记录-Lecture 7 神经网络训练2

    Lecture 7  Training Neural Networks 2 课堂笔记参见:https://zhuanlan.zhihu.com/p/21560667?refer=intelligent ...

  6. Cs231n课堂内容记录-Lecture 5 卷积神经网络介绍

    Lecture 5 CNN 课堂笔记参见:https://zhuanlan.zhihu.com/p/22038289?refer=intelligentunit 不错的总结笔记:https://blo ...

  7. Cs231n课堂内容记录-Lecture 9 深度学习模型

    Lecture 9 CNN Architectures 参见:https://blog.csdn.net/qq_29176963/article/details/82882080#GoogleNet_ ...

  8. Cs231n课堂内容记录-Lecture2-Part2 线性分类

    Lecture 3 课程内容记录:(上)https://zhuanlan.zhihu.com/p/20918580?refer=intelligentunit (中)https://zhuanlan. ...

  9. Cs231n课堂内容记录-Lecture2-Part1 图像分类

    Lecture 2 课程内容记录:(上)https://zhuanlan.zhihu.com/p/20894041?refer=intelligentunit (下)https://zhuanlan. ...

随机推荐

  1. 通过修改hosts解决gist.github.com无法访问的问题

    1.打开mac终端先ping一下 ping 192.30.253.119 如果能ping通的话 ,说明可以访问 2.修改hosts文件,添加如下语句: 192.30.253.118 gist.gith ...

  2. vux环境配置

    第一步 在vue项目中的package.json文件的dependencies中添加下面三行,即安装vux及其相关依赖 "vux":"^2.7.3", &quo ...

  3. MyBatis源码解析(七)——DataSource数据源模块之托管数据源

    原创作品,可以转载,但是请标注出处地址:http://www.cnblogs.com/V1haoge/p/6675700.html 1 回顾 之前介绍的非池型与池型数据源都是MyBatis自己定义的内 ...

  4. MySQL高可用之组复制(4):详细分析组复制理论

    MySQL组复制系列文章: MySQL组复制大纲 MySQL组复制(1):组复制技术简介 MySQL组复制(2):配置单主模型的组复制 MySQL组复制(3):配置多主模型的组复制 MySQL组复制( ...

  5. 应用负载均衡之LVS(五):lvs和nginx的wrr加权调度算法规律分析

    返回LVS系列文章:http://www.cnblogs.com/f-ck-need-u/p/7576137.html 加权调度算法(wrr)是一种很常见的调度算法.它们按照权重比例进行调度,但实际调 ...

  6. python的partial()用法说明

    在functools模块中有一个工具partial(),可以用来"冻结"一个函数的参数,并返回"冻结"参数后的新函数. 很简单的解释,也是官方手册给的示例.对于 ...

  7. Go Web:Cookie

    Cookie用来解决http协议无状态的问题. 首先,在服务端生成Cookie,然后在http响应header中设置Set-Cookie字段,客户端会读取到Set-Cookie字段后,会将cookie ...

  8. hadoop框架详解

    Hadoop框架详解 Hadoop项目主要包括以下四个模块 ◆ Hadoop Common: 为其他Hadoop模块提供基础设施 ◆ Hadoop HDFS: 一个高可靠.高吞吐量的分布式文件系统 ◆ ...

  9. 阿里云redis映射到阿里云服务器

    参考文档:https://help.aliyun.com/document_detail/43850.html?spm=a2c4g.11186623.2.3.7yg9VH ECS Windows 篇 ...

  10. mybatis XML中 遍历map写法

    <select id="selectMapTest" parameterType="java.util.HashMap" resultMap=" ...