/*
构造转移矩阵:
先推公式:
首先是第0行:A[0][j+1]=A[0][j]*10+3
1-n行: A[i][j+1]=A[i][j]+A[i-1][j+1]=...
=A[i][j]+A[i-1][j]+...+A[1][j]+A[0][j+1]
所以第j+1行状态可以由第j行通过乘上一个转移矩阵得到
那么就是转移矩阵的构造
设F[j]为第j列,F[j+1]为第j+1列,B为转移矩阵
有 F[j+1]=B*F[j]
按照递推性质
1 0 0 0 0 ... 0 3 3
1 10 0 0 0 ... 0 A[0][j] A[0][j+1]
1 10 1 0 0 ... 0 * A[1][j] = A[1][j+1]
1 10 1 1 0 ... 0 A[2][j] .
1 10 1 1 1 ... 0 A[3][j] .
1 10 1 1 1 ... 1 A[n][j] A[n][j+1]
规定初始数组F[0]=[3,233,a1,a2...an]
*/
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mod 10000007
ll F[],a[];
ll n,m;
struct Mat{
ll m[][];
Mat(){memset(m,,sizeof m);}
};
void mul1(Mat A,ll F[]){
ll B[]={};
for(int i=;i<n+;i++)
for(int j=;j<n+;j++)
B[i]=(B[i]+A.m[i][j]*F[j]%mod)%mod;
memcpy(F,B,sizeof B);
}
void mul2(Mat & A,Mat B){
Mat C;
for(int i=;i<n+;i++)
for(int j=;j<n+;j++)
for(int k=;k<n+;k++)
C.m[i][j]=(C.m[i][j]+A.m[i][k]*B.m[k][j]%mod)%mod;
memcpy(A.m,C.m,sizeof C.m);
}
int main(){
while(cin>>n>>m){
F[]=,F[]=;
for(int i=;i<n+;i++)cin>>F[i];
Mat A,B;
for(int i=;i<n+;i++)A.m[i][]=;
for(int i=;i<n+;i++)A.m[i][]=;
for(int j=;j<n+;j++)
for(int i=j;i<n+;i++)
A.m[i][j]=; while(m){
if(m%)
mul1(A,F);
mul2(A,A);
m>>=;
}
cout<<F[n+]<<endl;
}
}

hdu5015构造转移矩阵的更多相关文章

  1. 从随机过程到马尔科夫链蒙特卡洛方法(MCMC)

    从随机过程到马尔科夫链蒙特卡洛方法 1. Introduction 第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning t ...

  2. 北京培训记day1

    数学什么的....简直是丧心病狂啊好不好 引入:Q1:前n个数中最多能取几个,使得没有一个数是另一个的倍数   答案:(n/2)上取整 p.s.取后n/2个就好了 Q2:在Q1条件下,和最小为多少 答 ...

  3. MCMC 、抽样算法与软件实现

    一.MCMC 简介 1. Monte Carlo 蒙特卡洛 蒙特卡洛方法(Monte Carlo)是一种通过特定分布下的随机数(或伪随机数)进行模拟的方法.典型的例子有蒲丰投针.定积分计算等等,其基础 ...

  4. 2014 ACM/ICPC Asia Regional Xi'an Online

    03 hdu5009 状态转移方程很好想,dp[i] = min(dp[j]+o[j~i]^2,dp[i]) ,o[j~i]表示从j到i颜色的种数. 普通的O(n*n)是会超时的,可以想到o[]最大为 ...

  5. BZOJ4471 : 随机数生成器Ⅱ

    \[\begin{eqnarray*}x_i&=&x_{i-1}+x_{i-2}\\x_i^2&=&x_{i-2}^2+x_{i-1}^2+2x_{i-2}x_{i-1 ...

  6. [转] - MC、MC、MCMC简述

    贝叶斯集锦(3):从MC.MC到MCMC 2013-07-31 23:03:39 #####一份草稿 贝叶斯计算基础 一.从MC.MC到MCMC 斯坦福统计学教授Persi Diaconis是一位传奇 ...

  7. 随机采样方法整理与讲解(MCMC、Gibbs Sampling等)

    本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到P ...

  8. AC自动机基础知识讲解

    AC自动机 转载自:小白 还可参考:飘过的小牛 1.KMP算法: a. 传统字符串的匹配和KMP: 对于字符串S = ”abcabcabdabba”,T = ”abcabd”,如果用T去匹配S下划线部 ...

  9. LDA-math-MCMC 和 Gibbs Sampling

    http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/ 3.1 随机模拟 随机模拟(或者统计模拟)方法有一个很酷的别名是蒙特卡罗方法(Mon ...

随机推荐

  1. NPOI2.2.0.0实例详解(九)—设置EXCEL单元格【时间格式】

    原文:http://blog.csdn.net/xxs77ch/article/details/50245391 using System; using System.Collections.Gene ...

  2. bash 文件名操作 常用方法

    参考链接: http://www.jb51.net/article/51592.htm 查找文件不获取路径: find $1 -name '*.bin' -exec basename {} \;

  3. 前端开发者不得不知的es6十大特性(转)

    转载自AlloyTeam:http://www.alloyteam.com/2016/03/es6-front-end-developers-will-have-to-know-the-top-ten ...

  4. IDEA 启动时 自定义配置-只是看一下而已--注册激活

    可以看到很多东西,比如 :Application Server 都这么类型 ============ ===== 2017年11月10日14:25:30 原来是这样注册的,号称最简单的 2017年11 ...

  5. view类初探(一)

    /*************************************************************************************************** ...

  6. Python3-线程

    线程 什么是线程 线程的创建开销小 线程与进程的区别 为何要用多线程 多线程的应用举例 开启线程的两种方式 在一个进程下开启多个线程与在一个进程下开启多个子进程的区别 多线程并发的socket服务器 ...

  7. Excel自动建组

    已用于测试用例自动创建组 使用要求:A列的格式如:X.X.X.X.X11.11.1.11.1.1.11.1.1.1.11.1.1.21.1.21.22 会自动将1.1.1.1.1-1.1.1.1.X组 ...

  8. Mysql 5.* 数据库备份及导入

    作者:邓聪聪 倒出数据文件 1) 导出数据和表结构: 进入数据库查看表结构 msql -u用户名 -p密码 msql -u用户名 -p密码 -S /var/lib/mysql/mysql.sock  ...

  9. MongoVUE 使用教程

    MongoVUE是一款针对MongoDB的客户端工具,现在连接数据库也叫数据模式有2种方法,一种是B/S结构的数据库,通过网页就可以访问.另外一种就是基于C/S客户端的连接方式,本次为大家分享的这一个 ...

  10. Flask请求流程超清大图

    补充一下 request是在哪里产生的: class RequestContext(object): # app就是flask对象 self.app = app if request is None: ...