嘟嘟嘟




这题想了半天,搞出了一个\(O(10 * d * n)\)(\(d\)为\(n\)的约数个数)的贪心算法,就是能在子树内匹配就在子树内匹配,否则把没匹配的都交给父亲,看父亲能否匹配。交上去开了O2才得了60分。按讨论中的方法卡常后还是A不了,就放弃了。




正解需要推一个结论,就是一棵树能被分成\(x\)个大小相同的联通块,必须满足至少有\(\frac{n}{x}\)个子树的大小为\(x\)的倍数。

证明啥的yy一下就好啦……

想到这个结论后,我还是没想出复杂度更优的算法……最后看题解才知道,你开个桶记录子树大小,每次枚举倍数就能把\(n\)降成\(\sqrt{n}\)了……




啊忘说了,讨论中的卡常就是根据题中树的构造方法,把dfs改成逆序扫一遍,减小常数。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1.2e6 + 5;
const int NUM = 19940105;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} int n, fa[maxn];
struct Edge
{
int nxt, to;
}e[maxn];
int head[maxn], ecnt = -1;
In void addEdge(int x, int y)
{
e[++ecnt] = (Edge){head[x], y};
head[x] = ecnt;
} int num[maxn], cnt = 0;
In void init(int n)
{
for(int i = 1; i * i <= n; ++i)
if(n % i == 0)
{
num[++cnt] = i;
if(i * i < n) num[++cnt] = n / i;
}
sort(num + 1, num + cnt + 1);
} int ans;
int dp[maxn];
In bool dfs(int now, int _f) //我的O(n)贪心
{
for(int i = 1; i <= n; ++i) dp[i] = 1;
for(int i = n; i; --i)
{
if(dp[i] > ans) return 0;
if(dp[i] == ans) dp[i] = 0;
dp[fa[i]] += dp[i];
}
return 1;
} int siz[maxn], tot[maxn];
In bool judge(int x)
{
int ret = 0;
for(int i = x; i <= n; i += x) ret += tot[i];
return ret >= n / x;
}
In void solve()
{
fill(siz + 1, siz + n + 1, 1);
fill(tot + 1, tot + n + 1, 0);
for(int i = n; i; --i)
{
siz[fa[i]] += siz[i];
++tot[siz[i]];
}
for(int i = 1; i <= cnt; ++i)
{
ans = num[i];
if(judge(num[i])) write(ans), enter;
}
} int main()
{
n = read(); init(n);
for(int i = 2; i <= n; ++i) fa[i] = read();
puts("Case #1:");
solve();
for(int t = 1; t <= 9; ++t)
{
printf("Case #%d:\n", t + 1);
for(int i = 2; i <= n; ++i) fa[i] = (fa[i] + NUM) % (i - 1) + 1;
solve();
}
return 0;
}

[SDOi2012]吊灯的更多相关文章

  1. P2351 [SDOi2012]吊灯

    P2351 [SDOi2012]吊灯 https://www.luogu.org/problemnew/show/P2351     题意: 一棵树,能否全部分成大小为x的联通块. 分析: 显然x是n ...

  2. [bzoj3004] [SDOi2012]吊灯

    Description Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b ...

  3. 洛谷P2351 [SDOi2012]吊灯 【数学】

    题目 Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b].其中编号为 1 ...

  4. BZOJ.3004.[SDOI2012]吊灯(结论)

    题目链接 BZOJ 洛谷 题意: 将树划分为k个连通块,要求每个连通块大小相同.输出可能的大小. 结论: 满足条件时颜色的连通块数为k,当且仅当有 \(n/k\) 个节点满足它的子树是k的倍数(显然还 ...

  5. [bzoj3004][SDOI2012]吊灯——樹形DP

    Brief Description 給定一棵樹, 判斷是否可以將其分成\(\frac{n}{k}\)個聯通塊, 其中每個聯通塊的大小均爲k. Algorithm Design 我們有一個結論: k可行 ...

  6. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  7. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  8. Bzoj3004 吊灯

    Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 72  Solved: 46 Description        Alice家里有一盏很大的吊灯.所 ...

  9. 【BZOJ】【3004】吊灯

    思路题 要将整棵树分成大小相等的连通块,那么首先我们可以肯定的是每块大小x一定是n的约数,且恰好分成$\frac{n}{x}$块,所以我有了这样一个思路:向下深搜,如果一个节点的size=x,就把这个 ...

随机推荐

  1. SpringBoot中异步请求和异步调用(看这一篇就够了)

    原创不易,如需转载,请注明出处https://www.cnblogs.com/baixianlong/p/10661591.html,否则将追究法律责任!!! 一.SpringBoot中异步请求的使用 ...

  2. Flask 系列之 FlaskForm

    通过使用 FlaskForm ,可以方便快捷的实现表单处理. 说明 操作系统:Windows 10 Python 版本:3.7x 虚拟环境管理器:virtualenv 代码编辑器:VS Code 实验 ...

  3. php 设计模式之单例模式

    单例模式的关键点 1.//私有构造函数,防止直接new 创建实例 2.//设置静态成员变量 作保存实例 3.//公有访问实例的静态方法 4.//防止克隆对象的方法 上代码: //单例模式 class ...

  4. 关于RecyclerView你知道的不知道的都在这了(上)

    目录 前言 目录 正文 1. LayoutManager 2. ViewHolder 3. LayoutParams 4. Adapter 5. RecyclerView 6. Recycler 7. ...

  5. 用js实现超链接导航菜单点击切换选中时的状态

    项目中使用到点解导航切换不同的颜色,如果只是li选项卡还好办,这次用到的超链接选项卡,因为a链接每次点击都会刷新,所以浏览器记不住点击的状态,也没法切换点击状态,因为项目中有好多地方要用到,在网上找了 ...

  6. CentOS 7上VNCServer的安装使用

    1.安装 yum install tigervnc tigervnc-server 2.配置 vncserver的配置,创建一个新的配置文件 cp /lib/systemd/system/vncser ...

  7. iOS----------关于UDID和UUID的一些理解

    一.UDID(Unique Device Identifier)  UDID是Unique Device Identifier的缩写,中文意思是设备唯一标识. 在很多需要限制一台设备一个账号的应用中经 ...

  8. Android-textview图文混排(网络图片)

    工作太忙,不做过多的解释了,核心是用到了 SpannableStringBuilder  Glide  和 Rxjava 直接上代码了,就两个类. public class ImageSpanAsyn ...

  9. java基础(一)---数据类型&Math方法&强制转换

    数据类型及各种Math类方法 public class HelloWorld { public static void main(String args[]) { //各种数据类型的熟悉掌握,强制类型 ...

  10. go 开发中需要注意的与python的不同点

    从python转golang开发已经3个月了,因为写过c++,所以对golang接受的还算快,这段经历也不是很痛苦.伯乐在线上看了一些大神关于python转golang过程中的不适应和吐槽,决定写下篇 ...