意义

网络新闻往往含有丰富的语义,一篇文章既可以属于“经济”也可以属于“文化”。给网络新闻打多标签可以更好地反应文章的真实意义,方便日后的分类和使用。

难点

(1)类标数量不确定,有些样本可能只有一个类标,有些样本的类标可能高达几十甚至上百个。 

(2)类标之间相互依赖,例如包含蓝天类标的样本很大概率上包含白云,如何解决类标之间的依赖性问题也是一大难点。

(3)多标签的训练集比较难以获取。

方法

目前有很多关于多标签的学习算法,依据解决问题的角度,这些算法可以分为两大类:一是基于问题转化的方法,二是基于算法适用的方法。基于问题转化的方法是转化问题数据,使之使用现有算法;基于算法适用的方法是指针对某一特定的算法进行扩展,从而能够处理多标记数据,改进算法,适用数据。

基于问题转化的方法

基于问题转化的方法中有的考虑标签之间的关联性,有的不考虑标签的关联性。最简单的不考虑关联性的算法将多标签中的每一个标签当成是单标签,对每一个标签实施常见的分类算法。具体而言,在传统机器学习的模型中对每一类标签做二分类,可以使用SVM、DT、Naïve Bayes、DT、Xgboost等算法;在深度学习中,对每一类训练一个文本分类模型(如:textCNN、textRNN等)。考虑多标签的相关性时候可以将上一个输出的标签当成是下一个标签分类器的输入。在传统机器学习模型中可以使用分类器链[1],在这种情况下,第一个分类器只在输入数据上进行训练,然后每个分类器都在输入空间和链上的所有之前的分类器上进行训练。让我们试着通过一个例子来理解这个问题。在下面给出的数据集里,我们将X作为输入空间,而Y作为标签。在分类器链中,这个问题将被转换成4个不同的标签问题,就像下面所示。黄色部分是输入空间,白色部分代表目标变量。

在深度学习中,于输出层加上一个时序模型,将每一时刻输入的数据序列中加入上一时刻输出的结果值。以Chen[2]的论文为例,在获得文章的整体语义(Text feature vector)后,将Text feature vector输入到一个RNN的序列中作为初始值,每一时刻输入是上一时刻的输出。从某种程度上来说,图一所示的模型将 多标签任务当成了序列生成任务来处理。除此以外,Yang[3]的论文中也用生成模型来做多标签的分类任务。

除了将标签分开看之外,还有将标签统一来看(Label Powerset)。在这方面,我们将问题转化为一个多类问题,一个多类分类器在训练数据中发现的所有唯一的标签组合上被训练。让我们通过一个例子来理解它。

 

在这一点上,我们发现x1和x4有相同的标签。同样的,x3和x6有相同的标签。因此,标签powerset将这个问题转换为一个单一的多类问题,如下所示。

因此,标签powerset给训练集中的每一个可能的标签组合提供了一个独特的类。转化为单标签后就可以使用SVM、textCNN、textRNN等分类算法训练模型了。

感觉Label Powerset只适合标签数少的数据,一旦标签数目太多(假设有n个),使用Label Powerset后可能的数据集将分布在[0,2n-1]空间内,数据会很稀疏。

基于算法适用的方法

改编算法来直接执行多标签分类,而不是将问题转化为不同的问题子集。在传统机器学习模型中穿件的多标签分类模型有:kNN多标签版本MLkNN,SVM的多标签版本Rank-SVM等。在深度学习中常常是修改多分类模型的输出层,使其适用于多标签的分类,Mark J. Berger[4]在输出层对每一个标签的输出值使用sigmod函数进行2分类(标签之间无关联信息);Kurata在研究多标签分类时仍然使用了经典的CNN结构(如图2所示),不过在最后的全连接层的参数系数有些特别,也就是图2.1中Hidden layer到output layer的系数是经过特别设置的。

假设你总共有标签的个数为n(n=5)个,其分别是Λ=[λ1,λ2,λ3,λ4,,λ5,],假设共有两个样本,一个样本可能有标签为[λ1,λ4λ],另一个样本标签为[λ2,λ4,λ5],Hidden layer的单元个数假设为10个, Kurata把每个样本的标签作为一个标签共现模式(label co-occurrence pattern)有多少种不同的样本标签就有多少种不同的标签共现模式(样本可以无限很多,但是标签种类数最多有2n),然后对Hidden layer到output layer的权重参数进行设置(如下图2.2)。

图2.1  XXXX                                                          图2.2  XXX

James Mullenbach使用一般的CNN提取句子的语义信息,但考虑到句子表示的不同部分在句子分类的过程中会起不同的作用,故在进行分类时候使用了Attention机制(见图),使得在预测每一类时候句子的不同部分的表示起不同的作用。

图3  XXXX

其他方法基本上大同小异,在此不再赘述。

现有可利用资源

1、百度AI开放平台(文章标签)

2、Magpie(多标签分类工具)

3、2017知乎“看山杯”比赛(知乎问题多标签分类比赛,Github上面有代码)

4、https://drive.google.com/file/d/18-JOCIj9v5bZCrn9CIsk23W4wyhroCp_/view?usp=sharing(英文新闻多 标签分类数据集)

5、网上可采集的、质量较高的多标签分类数据集(豆瓣电影评论)

6、GitHub上比较完善的文本多标签分类项目

7、NLPCC2018,task6和tesk8均可以当成是多标签的分类任务;


部分参考文献

[3] http://arxiv.org/pdf/1806.0482

[4] http://web.stanford.edu/class/cs224d/reports/BergerMark.pdf

多标签分类(multi-label classification)综述的更多相关文章

  1. keras multi-label classification 多标签分类

    问题:一个数据又多个标签,一个样本数据多个类别中的某几类:比如一个病人的数据有多个疾病,一个文本有多种题材,所以标签就是: [1,0,0,0,1,0,1] 这种高维稀疏类型,如何计算分类准确率? 分类 ...

  2. 实战caffe多标签分类——汽车品牌与车辆外观(C++接口)[详细实现+数据集]

    前言 很多地方我们都需要用到多标签分类,比如一张图片,上面有只蓝猫,另一张图片上面有一只黄狗,那么我们要识别的时候,就可以采用多标签分类这一思想了.任务一是识别出这个到底是猫还是狗?(类型)任务二是识 ...

  3. 使用 scikit-learn 实现多类别及多标签分类算法

    多标签分类格式 对于多标签分类问题而言,一个样本可能同时属于多个类别.如一个新闻属于多个话题.这种情况下,因变量yy需要使用一个矩阵表达出来. 而多类别分类指的是y的可能取值大于2,但是y所属类别是唯 ...

  4. 从损失函数优化角度:讨论“线性回归(linear regression)”与”线性分类(linear classification)“的联系与区别

    1. 主要观点 线性模型是线性回归和线性分类的基础 线性回归和线性分类模型的差异主要在于损失函数形式上,我们可以将其看做是线性模型在多维空间中“不同方向”和“不同位置”的两种表现形式 损失函数是一种优 ...

  5. CVPR2022 | 弱监督多标签分类中的损失问题

    前言 本文提出了一种新的弱监督多标签分类(WSML)方法,该方法拒绝或纠正大损失样本,以防止模型记忆有噪声的标签.由于没有繁重和复杂的组件,提出的方法在几个部分标签设置(包括Pascal VOC 20 ...

  6. scikit-learn一般实例之八:多标签分类

    本例模拟一个多标签文档分类问题.数据集基于下面的处理随机生成: 选取标签的数目:泊松(n~Poisson,n_labels) n次,选取类别C:多项式(c~Multinomial,theta) 选取文 ...

  7. CSS.02 -- 样式表 及标签分类(块、行、行内块元素)、CSS三大特性、背景属性

    样式表书写位置  内嵌式写法 <head> <style type="text/css"> 样式表写法 </style> </head&g ...

  8. 前端 HTML 标签分类

    三种: 1.块级标签: 独占一行,可设置宽度,高度.如果设置了宽度和高度,则就是当前的宽高.如果宽度和高度没有设置,宽度是父盒子的宽度,高度根据内容填充. 2.行内标签:在一行内显示,不能设置宽度,高 ...

  9. k-近邻算法 标签分类

    k-近邻算法根据特征比较,然后提取样本集中特征最相似数据(最邻近)的分类标签.那么,如何进行比较呢? 怎么判断红色圆点标记的电影所属的类别呢? 如下图所示. 答:距离度量.这个电影分类的例子有2个特征 ...

随机推荐

  1. 在Ubuntu 18.04系统中蓝牙鼠标连接失败问题的解决

    2018-08-22 16:00:35作者:谖瓞稿源:linux站 如果你在Ubuntu 18.04操作系统中有蓝牙鼠标连接失败问题,那就参考下面的解决方法处理. 解决方法 首先在系统终端下输入: b ...

  2. javaScript第一篇

    什么中DOM: DOM是一套对文档内容进行抽象各概念化的方法; 例如:我们对别人说:“猫在沙发上!”:别人听到的不会是“狗已经跑了”:这是因为人类对已有的事物有了一套公有的认识;再比如,有人问你,“左 ...

  3. mysql时区配置

    1.修改linux系统时区:ln -sf /usr/share/zoneinfo/America/Los_Angeles /etc/localtime 修改为美洲美国洛杉矶时间 2.查看mysql时区 ...

  4. BZOJ 4823 Luogu P3756 [CQOI2017]老C的方块 (网络流、最小割)

    题目链接 (Luogu) https://www.luogu.org/problem/P3756 (BZOJ) http://lydsy.com/JudgeOnline/problem.php?id= ...

  5. Spring Boot教程(三十四)使用Redis数据库(2)

    除了String类型,实战中我们还经常会在Redis中存储对象,这时候我们就会想是否可以使用类似RedisTemplate<String, User>来初始化并进行操作.但是Spring ...

  6. zookeeper系列(五)zookeeper在大型分布式系统中的应用

    作者:leesf    掌控之中,才会成功:掌控之外,注定失败. 出处:http://www.cnblogs.com/leesf456/p/6063694.html 尊重原创感谢博主公开这么好的博文, ...

  7. Java项目框架搭建系列(Java学习路线)

    前言: 已经工作4年,真是时间飞逝. 其实当你在一间公司工作一两年之后,公司用到的开发框架的基本使用你应该都会了. 你会根据一个现有项目A复制一下搭建出另外一个类似框架的项目B,然后在项目B上进行业务 ...

  8. Joda-DateTime Date 与 String 相互转换

    [参考文章]:Joda-Time 的 DateTimeFormat 问题 public class DateFormatUtils { /** HH 必须大写 */ public static fin ...

  9. 8,聚类分析 fenxinhuag

    1.K-Means聚类分析 2.系统聚类分析 样本间常用距离: 类间常用距离: 3.DBSCAN聚类分析

  10. 执行docker run命令时报错Get https://registry-1.docker.io/v2/: net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers)

    一.解决办法: 修改host 二.步骤如下 2.1 安装dig工具  sudo apt-get install dnsutils -y (ubuntu下的安装方法) 2.2 找到registry-1. ...