Tarjan + Topsort
Tarjan 缩点
Topsort 判断

Topsort 判断:
在DAG中
若初始状态下存在多于1个入度为0的点
则说明这些 入度为0的点之间不会有路径可达
若不存在入度为0的点,则状态为Yes
若只存在1个入度为0的点,将该点指出的边删除
继续上述判断

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring> const int N = , M = N * ; #define gc getchar() inline int read() {
int x = ; char c = gc;
while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x;
} int head[N], head_2[N], cnt;
struct Node {int u, v, nxt;};
Node G[M], E[M];
int In[N], n, m;
int Low[N], Dfn[N], Stack[N], Belong[N], Scc, Tim, topp;
bool vis[N]; inline void Add_1(int u, int v) {G[++ cnt].v = v; G[cnt].nxt = head[u]; head[u] = cnt;}
inline void Add_2(int u, int v) {E[++ cnt].v = v; E[cnt].nxt = head_2[u]; head_2[u] = cnt; In[v] ++;} inline void Clear() {
memset(head, -, sizeof head);
memset(head_2, -, sizeof head_2);
memset(In, , sizeof In);
memset(Low, , sizeof Low);
memset(Dfn, , sizeof Dfn);
memset(vis, , sizeof vis);
topp = cnt = Scc = Tim = ;
} inline void Init() {
n = read(), m = read();
for(int i = ; i <= m; i ++) Add_1(read(), read());
} void Tarjan(int x) {
Low[x] = Dfn[x] = ++ Tim;
Stack[++ topp] = x; vis[x] = ;
for(int i = head[x]; ~ i; i = G[i].nxt) {
int v = G[i].v;
if(!Dfn[v]) {
Tarjan(v);
Low[x] = std:: min(Low[x], Low[v]);
} else if(vis[v]) Low[x] = std:: min(Low[x], Low[v]);
}
if(Dfn[x] == Low[x]) {
vis[x] = , Belong[x] = ++ Scc;
while(Stack[topp] != x) {
vis[Stack[topp]] = , Belong[Stack[topp]] = Scc;
topp --;
} topp --;
}
} inline void Rebuild() {
cnt = ;
for(int u = ; u <= n; u ++)
for(int i = head[u]; ~ i; i = G[i].nxt)
if(Belong[u] != Belong[G[i].v]) Add_2(Belong[u], Belong[G[i].v]);
} void Topsort() {
if(Scc == ) {puts("Yes"); return ;}
int Ans(), flag;
for(int i = ; i <= Scc; i ++) if(!In[i]) Ans ++, flag = i;
if(Ans > ) {puts("No"); return ;}
int temp = Scc;
for(; temp; temp --) {
Ans = ;
for(int i = head_2[flag]; ~ i; i = E[i].nxt) {
int v = E[i].v;
In[v] --;
if(!In[v]) Ans ++, flag = v;
}
if(Ans > ) {puts("No"); return ;}
if(!Ans) {puts("Yes"); return ;}
}
puts("Yes"); return ;
} void Work() {
Clear();
Init();
for(int i = ; i <= n; i ++) if(!Dfn[i]) Tarjan(i);
Rebuild();
Topsort();
} int main() {
int t = read();
for(; t; t --, Work());
return ;
}

    

poj 2762的更多相关文章

  1. POJ 2762 Going from u to v or from v to u?(强连通分量+拓扑排序)

    职务地址:id=2762">POJ 2762 先缩小点.进而推断网络拓扑结构是否每个号码1(排序我是想不出来这点的. .. ).由于假如有一层为2的话,那么从此之后这两个岔路的点就不可 ...

  2. poj 2762(强连通+判断链)

    题目链接:http://poj.org/problem?id=2762 思路:首先当然是要缩点建新图,由于题目要求是从u->v或从v->u连通,显然是要求单连通了,也就是要求一条长链了,最 ...

  3. POJ 2762 Going from u to v or from v to u? (强连通分量缩点+拓扑排序)

    题目链接:http://poj.org/problem?id=2762 题意是 有t组样例,n个点m条有向边,取任意两个点u和v,问u能不能到v 或者v能不能到u,要是可以就输出Yes,否则输出No. ...

  4. poj 2762 Going from u to v or from v to u?(强连通分量+缩点重构图+拓扑排序)

    http://poj.org/problem?id=2762 Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit:  ...

  5. poj 2762(强连通分量+拓扑排序)

    题目链接:http://poj.org/problem?id=2762 题意:给出一个有向图,判断任意的两个顶点(u,v)能否从u到达v,或v到达u,即单连通,输出Yes或No. 分析:对于同一个强连 ...

  6. POJ 2762 Going from u to v or from v to u? (判断单连通)

    http://poj.org/problem?id=2762 题意:给出有向图,判断任意两个点u和v,是否可以从u到v或者从v到u. 思路: 判断图是否是单连通的. 首先来一遍强连通缩点,重新建立新图 ...

  7. [ tarjan + dfs ] poj 2762 Going from u to v or from v to u?

    题目链接: http://poj.org/problem?id=2762 Going from u to v or from v to u? Time Limit: 2000MS   Memory L ...

  8. POJ 2762 Going from u to v or from v to u?(强联通,拓扑排序)

    id=2762">http://poj.org/problem?id=2762 Going from u to v or from v to u? Time Limit: 2000MS ...

  9. [强连通分量] POJ 2762 Going from u to v or from v to u?

    Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17089 ...

  10. POJ 2762 tarjan缩点+并查集+度数

    Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15494 ...

随机推荐

  1. 『Linux』第一节: 部署虚拟环境

    一. 准备工具 1. VMware Workstation Pro下载 1.1 VMware Workstation Pro 激活许可证 UY758-0RXEQ-M81WP-8ZM7Z-Y3HDA V ...

  2. Uwl.Admin开源框架(一)

    1.前言 作为一个忠实的软粉,一直期待微软出跨平台,一直在等待.Net Core,因为刚毕业对于.Net的很多东西不是很熟知,就开始了.Net Core的摸索,一路上坎坎坷坷,对于新技术一直很期待,就 ...

  3. 八、wepy代码规范

    变量与方法尽量使用驼峰式命名,并且注意避免使用$开头. 以$开头的标识符为WePY框架的内建属性和方法,可在JavaScript脚本中以this.的方式直接使用,具体请参考API文档. 小程序入口.页 ...

  4. 博客自定义1-皮肤模板 基于SimpleMemory 添加到顶部小按钮

    周五公司事不是很紧,打算好好弄下自己的博客,这是自己学习和记录分享地方, 首先请记得申请js权限,默认不支持的,博主是已经申请通过后的样子 接着先选择cnblogs一个现有的模板,我这个就是在他的模板 ...

  5. JS基础_this

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  6. Python练习_Python初识_day2

    题目 1.作业 1.判断下列逻辑语句的True,False. 1)1 > 1 or 3 < 4 or 4 > 5 and 2 > 1 and 9 > 8 or 7 < ...

  7. Postman如何进行参数化

    前言 Postman作为一款接口测试工具,受到了非常多的开发工程师的拥护. 那么做为测试,了解Postman这款工具就成了必要的了. 这篇文章就是为了解决Postman怎么进行参数化的. 全局变量 全 ...

  8. Spark学习笔记2——RDD(上)

    目录 Spark学习笔记2--RDD(上) RDD是什么? 例子 创建 RDD 并行化方式 读取外部数据集方式 RDD 操作 转化操作 行动操作 惰性求值 Spark学习笔记2--RDD(上) 笔记摘 ...

  9. man 手册--nc

    man 手册--nc NCAT(1) Ncat Reference Guide NCAT(1) NAME ncat - Concatenate and redirect sockets SYNOPSI ...

  10. Linux命令——netstat

    参考:20 Netstat Commands for Linux Network Management Foreword Print network connections, routing tabl ...