title: 【线性代数】5-3:克莱姆法则,逆和体积(Cramer’s Rule,Inverses,and Volumes)

categories:

  • Mathematic
  • Linear Algebra

    keywords:
  • Inverses
  • Cramer’s Rule
  • Volumes
  • Determinant
  • Cross Product

    toc: true

    date: 2017-11-05 10:09:53

Abstract: 本文主要介绍行列式的应用,包括求逆,求面积,求体积,以及叉乘的一些性质

Keywords: Inverses,Cramer’s Rule,Volumes,Determinant,Cross Product

开篇废话

废话已经变成每篇的例行公事了,不过我们还是来嘲笑一下Apple这个“垃圾”公司,憋了三五年搞出来个iPhone x,连个双胞胎都识别不出来,我们国内的各大小厂商随便搞个平面摄像头就搞定的简单任务,apple这么大个公司,用了三维图像都搞不出来,被各大网友嘲笑,其实之前好多VC都问我:“你这个识别双胞胎行不行”,我说,“No”,然后大哥语重心长的对我说“别人xx都能识别,你这个技术不到位啊”,以上对话真实存在,而且发生了好多次,后来我们的宣传口号就是"我们的摄像头亩产1亿斤小麦",哈哈哈。希望业界技术能不断推陈出新,不断再创新高,也祝给为VC投资都有回报,祝那些双胞胎人脸准确率继续攀升。

Cramer’s Rule

Cramer应该是行列式研究比较关键的一个人,但绝对不是第一个人,他应该是把行列式单独出来研究的数学家,但是最一开始用行列式解方程的可能是莱布尼兹,所以行列式发明伊始毫无疑问是用来解方程的。Cramer法则也是用来解方程的,顺便也能求个逆什么的。

Ax=bAx=bAx=b

Ax=bAx=bAx=b 我们已经研究了有一段时间了,但是我们今天还要继续通过研究旧的知识来得到新的知识,其实数学知识体系应该就是这样的,一开始有几个公理,然后逐渐通过推导,证明, 定义,引申,出来一个完整的数学体系,读陶哲轩的《analysis》和陈希孺的《概率与数理统计》都给人一种这个感觉,很简单的几个公理,能推导出一些列非常惊艳的理论和体系,然后经过我们专家们的努力,变成了各种难度的考试题。

Key Idea:

[A][x100x210x301]=[b1a12a13b2a22a23b3a32a33]=B1
\begin{bmatrix}
&&\\&A&\\&&
\end{bmatrix}
\begin{bmatrix}
x_1&0&0\\x_2&1&0\\x_3&0&1
\end{bmatrix}=
\begin{bmatrix}
b_1&a_{12}&a_{13}\\b_2&a_{22}&a_{23}\\b_3&a_{32}&a_{33}
\end{bmatrix}=B_1
⎣⎡​​A​​⎦⎤​⎣⎡​x1​x2​x3​​010​001​⎦⎤​=⎣⎡​b1​b2​b3​​a12​a22​a32​​a13​a23​a33​​⎦⎤​=B1​

这个大家应该都理解了,如果按照列空间的模式来看,就是 B⃗\vec{B}B 被A矩阵射到列空间,然后为了和谐将 [010]\begin{bmatrix}0\\1\\0\end{bmatrix}⎣⎡​010​⎦⎤​ 和 [001]\begin{bmatrix}0\\0\\1\end{bmatrix}⎣⎡​001​⎦⎤​ 陪射到列空间,然后拼起来就是个矩阵乘矩阵等于矩阵了,这样有个非常不错的效果就是 [x100x210x301]\begin{bmatrix}x_1&0&0\\x_2&1&0\\x_3&0&1\end{bmatrix}⎣⎡​x1​x2​x3​​010​001​⎦⎤​ 这货的行列式是 x1x_1x1​ ,那就可以了,利用行列式的性质,两边去行列式就有了

本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-5-3转载请标明出处

【线性代数】5-3:克莱姆法则,逆和体积(Cramer's Rule,Inverses,and Volumes)的更多相关文章

  1. 克拉默法则(Cramer's Rule)的证明

    克拉默法则: 先说一下为什么要写这个,作为一个大一新生,必须要学的就包括了线性代数,而且线性代数等数学知识对计算机专业也有很大帮助.但是在学习过程中遇到一个讲解的不清楚的知识点(Cramer's Ru ...

  2. 【线性代数】Linear Algebra Big Picture

    Abstract: 通过学习MIT 18.06课程,总结出的线性代数的知识点相互依赖关系,后续博客将会按照相应的依赖关系进行介绍.(2017-08-18 16:28:36) Keywords: Lin ...

  3. Other-Website-Contents.md

    title: 本站目录 categories: Other sticky: 10 toc: true keywords: 机器学习基础 深度学习基础 人工智能数学知识 机器学习入门 date: 999 ...

  4. 灰度图像--图像分割 阈值处理之OTSU阈值

    学习DIP第55天 转载请标明本文出处:***http://blog.csdn.net/tonyshengtan ***,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:http ...

  5. POJ 题目分类(转载)

    Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...

  6. HDU——PKU题目分类

    HDU 模拟题, 枚举1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 ...

  7. (转)POJ题目分类

    初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推. ...

  8. poj分类

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  9. 转载 ACM训练计划

    leetcode代码 利用堆栈:http://oj.leetcode.com/problems/evaluate-reverse-polish-notation/http://oj.leetcode. ...

随机推荐

  1. ajax post上传数据时,前端出现的跨域权限问题:ccess to XMLHttpRequest at ‘’rom origin 'null' has been blocked by CORS policy: Response to preflight request doesn't pass access control check: It does not have HTTP ok st

    本人前端使用多个框架时,jq  ajax传参出现如下报错: 最后发现,可能是xhr的相关默认参数被修改了.顾使用jq 传参时,一直报错,jq  ajax额外添加的关键参数: crossDomain: ...

  2. Shell重定向:2>&1

    Shell重定向:2>&1 0 是一个文件描述符,表示标准输入(stdin) 1 是一个文件描述符,表示标准输出(stdout) 2 是一个文件描述符,表示标准错误(stderr) 重定 ...

  3. (七)Hibernate中使用JDBC

    在hibernate中获取connection数据库连接有两种方法:(操作数据库常用这种方法) 1. session.doReturningWork   返回一个对象,适用于查询方法 2. sessi ...

  4. 从零开始学ios开发(二):Hello World!

    今天看了书的第二章,主要介绍了一下Xcode的使用方法和一些必要的说明,最后做了一个“Hello World!”的小程序,其实就是在屏幕上用一个Label显示“Hello World!”,一行代码都没 ...

  5. React中setState如何修改深层对象?

    在React中经常会使用到setState,因为在react生态中,state就是一切.在开发过程中,时长会在state中遇到一些比较复杂的数据结构,类似下面这样的: 这时需要我们修改list中obj ...

  6. dfs · leetcode-22.产生括号组?

    题面 Given n pairs of parentheses, write a function to generate all combinations of well-formed parent ...

  7. Eclipse中如何创建一个完整的Maven-Web项目

    Maven Web项目搭建 1.首先确保本地开发环境搭建完毕(jdk,maven). 2.打开Eclipse,新建Maven项目.选择Maven Project选项. 3.将第一项:Create a ...

  8. EtherNet/IP 协议应用层使用CIP协议&CIP协议中使用的TLS和DTLS(Network Infrastructure for EtherNet/IPTM: Introduction and Considerations)

  9. 10_Azkaban案例实践3_Command操作HDFS

    HDFS操作任务 1.创建job描述文件 # fs.job type=command command=/usr/local/src/hadoop-2.6.4/bin/hadoop fs -mkdir ...

  10. C# 开发的windows服务 不能调试——讨论整理

    CSDN的标题:C# 开发的windows服务 不能调试 System.Diagnostics.Debugger.Launch();在想加断点的地方加入这行,是进入断点的,可以进行调试,我的是xp系统 ...