LOJ #3119「CTS2019 | CTSC2019」随机立方体 (容斥)
博客链接
里面有个下降幂应该是上升幂
还有个bk的式子省略了k^3
CODE
蛮短的
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 5000005;
const int mod = 998244353;
int fac[MAXN], inv[MAXN];
inline void PreWork(int N) {
fac[0] = fac[1] = inv[0] = inv[1] = 1;
for(int i = 2; i <= N; ++i) {
fac[i] = 1ll * fac[i-1] * i % mod;
inv[i] = 1ll * (mod - mod/i) * inv[mod%i] % mod;
}
for(int i = 2; i <= N; ++i)
inv[i] = 1ll * inv[i-1] * inv[i] % mod;
}
inline int mul(int a, int b, int c) { return 1ll * a * b % mod * c % mod; }
inline int qpow(int a, int b) {
int re = 1;
while(b) {
if(b&1) re = 1ll * re * a % mod;
a = 1ll * a * a % mod; b >>= 1;
}
return re;
}
inline int C(int n, int m) { return n < m ? 0 : mul(fac[n], inv[m], inv[n-m]); }
int T, n, m, l, k, lim;
int a[MAXN], pre[MAXN], f[MAXN];
int main () {
PreWork(MAXN-5);
scanf("%d", &T);
while(T--) {
scanf("%d%d%d%d", &n, &m, &l, &k); lim = min(min(n,m),l);
if(k > lim) { puts("0"); continue; }
pre[0] = 1;
for(int i = 1; i <= lim; ++i) {
a[i] = (mul(n, m, l) - mul(n-i, m-i, l-i)) % mod;
pre[i] = 1ll * pre[i-1] * a[i] % mod;
}
pre[lim] = qpow(pre[lim], mod-2);
for(int i = lim-1; i >= 1; --i)
pre[i] = 1ll * pre[i+1] * a[i+1] % mod;
for(int i = 1; i <= lim; ++i)
f[i] = 1ll * mul(fac[n], fac[m], fac[l])
* mul(inv[n-i], inv[m-i], inv[l-i]) % mod
* pre[i] % mod;
int ans = 0; int sgn = 1;
for(int i = k; i <= lim; sgn=-sgn, ++i)
ans = (ans + 1ll * sgn * C(i, k) * f[i] % mod) % mod;
printf("%d\n", (ans + mod) % mod);
}
}
LOJ #3119「CTS2019 | CTSC2019」随机立方体 (容斥)的更多相关文章
- LOJ #3119. 「CTS2019 | CTSC2019」随机立方体 组合计数+二项式反演
好神的一道计数题呀. code: #include <cstdio> #include <algorithm> #include <cstring> #define ...
- 【LOJ】#3119. 「CTS2019 | CTSC2019」随机立方体
题解 用容斥,算至少K个极大值的方案数 我们先钦定每一维的K个数出来,然后再算上排列顺序是 \(w_{k} = \binom{n}{k}\binom{m}{k}\binom{l}{k}(k!)^3\) ...
- 「CTS2019 | CTSC2019」随机立方体 解题报告
「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\( ...
- LOJ 3119: 洛谷 P5400: 「CTS2019 | CTSC2019」随机立方体
题目传送门:LOJ #3119. 题意简述: 题目说的很清楚了. 题解: 记恰好有 \(i\) 个极大的数的方案数为 \(\mathrm{cnt}[i]\),则答案为 \(\displaystyle\ ...
- LOJ3119. 「CTS2019 | CTSC2019」随机立方体 二项式反演
题目传送门 https://loj.ac/problem/3119 现在 BZOJ 的管理员已经不干活了吗,CTS(C)2019 和 NOI2019 的题目到现在还没与传上去. 果然还是 LOJ 好. ...
- Loj #3124. 「CTS2019 | CTSC2019」氪金手游
Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- LOJ 3124 「CTS2019 | CTSC2019」氪金手游——概率+树形DP
题目:https://loj.ac/problem/3124 看了题解:https://www.cnblogs.com/Itst/p/10883880.html 先考虑外向树. 考虑分母是 \( \s ...
- @loj - 3120@ 「CTS2019 | CTSC2019」珍珠
目录 @description@ @solution@ @accepted code@ @details@ @description@ 有 \(n\) 个在范围 \([1, D]\) 内的整数均匀随机 ...
随机推荐
- 解决无/var/log/messages 问题
转载于:https://blog.csdn.net/C_Major/article/details/51321684 1 内核编程insmod后,Ubuntu查看日志无/var/log/message ...
- mysql支持emoji表情符存储
一.教你如何让数据库支持emoji表情符存储 解决方式: 更换字符集utf8-->utf8mb4 问题描述: 前台应用抓取微博信息,每天总有几条数据插入不成功.应用日志显示: java.sql. ...
- [转帖]PostgreSQL 昨天,今天和明天
PostgreSQL 昨天,今天和明天 http://www.postgres.cn/v2/news/viewone/1/52 原作者:何伟平(laser) 创作时间:2005-01-15 11:44 ...
- AtCoder整理(持续更新中……)
做了那么久的atcoder觉得自己的题解发的很乱 给有想和我一起交流atcoder题目(或者指出我做法的很菜)(或者指责我为什么整场比赛只会抄题解)的同学一个索引的机会??? 于是写了个爬虫爬了下 A ...
- dict字典
dict字典 字典的概述 • 概述:使⽤键-值(key-value)⽅式存储. • key的特点: • 1.字典中的key必须是唯⼀的 • 2.key值必须是不可变的数据类型:字符串.元组.Numbe ...
- golang goroutine进行通信 channel
1.channel的读取与声明 //goroutine之间利用channel进行通信 package main import ( "fmt" "time" ) ...
- BZOJ4556 HEOI2016/TJOI2016字符串 (后缀树+主席树)
二分答案后相当于判断一个区间的后缀与某个后缀的最长公共前缀是否能>=ans.建出后缀树,在上述问题中后者所在节点向上倍增的跳至len>=ans的最高点,然后相当于查询子树中是否有该区间的节 ...
- css 动画(一)transform 变形
前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! 有段时间我是没理清 transform.translate.transition 和 animation之 ...
- 扩展kmp入门+比赛模板
https://wenku.baidu.com/view/8e9ebefb0242a8956bece4b3.html 参考了这个ppt 理解起来还是有点费劲的(还是推荐一下这个课件 里面概念和思路给的 ...
- outlook 升级 及邮件同步方式设置
**office(outlook2010 32B)升级到office2016 64B时的操作 1.删除office(excel. word等) 2.选择offcie2016 安装程序安装 (outlo ...