【agc005d】~K Perm Counting
题目大意
求有多少中1~n的排列,使得\(abs(第i个位置的值-i)!=k\)
解题思路
考虑容斥,\(ans=\sum_{i=0}^{n}(-1)^ig[i](n-i)!(g[i]表示至少有i个位置是不合法的方案数)\)
考虑如何求g[i]
将每个位置和每个值都作为一个点,有2n个点,如果第i位置不可以填j,将位置i向值j连边。
这样,就得到了一个二分图,问题就变成了选i条边的方案数。
将二分图的每条链拉出来,并在一起,就形成2n个点排成一排,一些相邻点之间有边。
设\(f[i][j][0/1]\)表示,做到第i个点,选了j条边,这个点与上个一点的边是否有选(如果没边就为0)的方案数。
那么\(g[i]=f[2n][i]][0]+f[2n][i][1]\)
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <bitset>
#include <set>
const int inf=2147483647;
const int mo=924844033;
const int N=4005;
using namespace std;
int n,m,tot;
bool lk[N];
long long f[N][N][2],jc[N],ans;
int main()
{
scanf("%d%d",&n,&m);
jc[0]=1;
for(int i=1;i<=n;i++) jc[i]=1ll*jc[i-1]*i%mo;
for(int i=1;i<=m;i++)
for(int t=2;t--;)
for(int j=i;j<=n;j+=m)
{
tot++;
if(j!=i) lk[tot]=1;
}
f[0][0][0]=1;
for(int i=0;i<n*2;i++)
for(int j=0;j<=n;j++)
{
f[i+1][j][0]=(f[i][j][0]+f[i][j][1])%mo;
if(lk[i+1]) f[i+1][j+1][1]=f[i][j][0];
}
for(int i=0,t=1;i<=n;i++,t=-t)
{
f[2*n][i][0]=1ll*(f[2*n][i][0]+f[2*n][i][1])*jc[n-i]%mo;
ans=(ans+f[2*n][i][0]*t+mo)%mo;
}
printf("%lld\n",ans);
}
【agc005d】~K Perm Counting的更多相关文章
- [Agc005D]K Perm Counting
[Agc005D] K Perm Counting Description 糟糕爷特别喜爱排列.他正在构造一个长度为N的排列.但是他特别讨厌正整数K.因此他认为一个排列很糟糕,当且仅当存在至少一个i( ...
- 【BZOJ3110】K大数查询(整体二分)
[BZOJ3110]K大数查询(整体二分) 题面 BZOJ 题解 看了很久整体二分 一直不知道哪里写错了 ... 又把树状数组当成线段树区间加法来用了.. 整体二分还是要想清楚在干什么: 我们考虑第\ ...
- 【CF1133E】K Balanced Teams(动态规划,单调队列)
[CF1133E]K Balanced Teams(动态规划,单调队列) 题面 CF 让你把一堆数选一些出来分成不超过\(K\)组,每一组里面的最大值和最小值之差不超过\(5\),求最多有多少个人元素 ...
- AGC 005 D - ~K Perm Counting
D - ~K Perm Counting 链接 题意: 求有多少排列对于每个位置i都满足$|ai−i|!=k$.n<=2000 分析: 容斥+dp. $answer = \sum\limits_ ...
- 【BZOJ4520】K远点对(KD-Tree)
[BZOJ4520]K远点对(KD-Tree) 题面 BZOJ 洛谷 题解 考虑暴力. 维护一个大小为\(K\)的小根堆,然后每次把两个点之间的距离插进去,然后弹出堆顶 这样子可以用\(KD-Tree ...
- 【BZOJ4504】K个串 可持久化线段树+堆
[BZOJ4504]K个串 Description 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计 ...
- 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数
[BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...
- 【BZOJ】【1072】【SCOI2007】排列perm
暴力 ……傻逼题我还WA了这么多次(有几次是忘了删调试信息……sigh) 直接统计0~9各有多少个,枚举数字就行了……因为是直接枚举的数字,而不是枚举用了s中的哪一位,所以是不用去重的!(我一开始写的 ...
- bzoj1072【SCOI2007】排列perm
1072: [SCOI2007]排列perm Time Limit: 10 Sec Memory Limit: 162 MB Submit: 1479 Solved: 928 [id=1072&q ...
随机推荐
- soap-ws获取ws中的所有的接口方法
soap-ws获取wsdl中的所有的接口方法 示例wsdl文件如下,生成的过程可以参考https://www.cnblogs.com/chenyun-/p/11502446.html: <def ...
- ASP.NET Core中使用Dapper
⒈添加 NuGet 包 Install-Package Dapper ⒉封装数据库类型 using System; using System.Collections.Generic; using Sy ...
- laravel框架之自帶登錄&註冊
//控制器層 <?php namespace App\Http\Controllers\admin; use App\Models\admin\Users; use Illuminate\Htt ...
- 前端 CSS 2
无序列表去除自带的样式 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...
- go intall的使用
1.首先GOPATH路径指向src的上级目录 2.设置GOBIN路径指向bin目录 3.查看环境配置 4.go install 在src目录下 5.完成 6.pkg ide编译运行一下自动生成
- init是一个自定义方法名
init是一个自定义方法名,用于初始化页面变量.上面的代码表示初始化方法是在当前网页加载后执行的(当浏览器打开网页时,触发窗口对象的onload方法,用上面的代码执行名为init的初始化方法).事实上 ...
- 页面加载时调用js函数方法
方法一:在html的body中加入onload=""事件 <body onload='queryServer()'> </body> 方法二:jquery ...
- vuex中的this.$store.commit
Vue的项目中,如果项目简单, 父子组件之间的数据传递可以使用 props 或者 $emit 等方式 进行传递 但是如果是大中型项目中,很多时候都需要在不相关的平行组件之间传递数据,并且很多数据需要多 ...
- 深入学习Mybatis框架(二)- 进阶
1.动态SQL 1.1 什么是动态SQL? 动态SQL就是通过传入的参数不一样,可以组成不同结构的SQL语句. 这种可以根据参数的条件而改变SQL结构的SQL语句,我们称为动态SQL语句.使用动态SQ ...
- 利用PyMySQL模块操作数据库
连接到数据库 import pymysql # 创建链接得到一个链接对象 conn = pymysql.Connect( host="127.0.0.1", # 数据库服务器主机地 ...