首先next_permutation打表,发现Cat规律。

其实考试的时候这么做没什么问题,而且可以节省异常多的时间,那么现在我们来想一下why。

首先我拿模型法解释一下,我们把2n个数看成2n个人,既然分成奇数和偶数两种比较方式,那么我让他们站成两排,每一排有n个人,这n个人的身高递增,且,第二排的人必须高于第一排,那么这个问题就变成了:

有2n个身高互不相同人站成两排,每排n人,要求右边的人比左边的人高,后面的人比前面的人高,问我有几种排队方案。

这是一个Cat的模型,既然先站哪一排无所谓,我就让某个位置必须先站上第一排的人再站上第二排的人,如果我将站在第一排看做是0,站在第二排看做是1,那么既然每个1前面一定有一个比他矮的人,则一定有一个0,那么就又转化成了求0,1序列,这是一个更加经典的Cat模型。(如果这里理解不了可以上网搜搜)

然后再拿折线法解释一下,我们把偶数项看做x轴上的数,因为他们是单增的,把奇数项看做y轴上的数,由于奇数项小于与之对应偶数项,也就是不能越过y=x,函数的变化就好像只能向右走和向上走。这个问题在上一篇博客中有详细的解法。

所以我们明白它是让我们求Cat,可是P不一定是质数,逆元的问题很恶心。

所以我们采用唯一分解来做。首先线性筛筛出2n以内的所有素数,然后我们枚举每个素数,对n执行以下操作:将n不断的除以这个素数,并将商加入s变量,最终s的值就是n!在算术基本定理拆分后,这个素数的指数。举个例子:

8!=27*32*5*7,8/2=4,4/2=2,2/2=1,1/2=0。4+2+1+0=7。

20!=218……,20/2=10,10/2=5,5/2=2,2/2=1,1/2=0。10+5+2+1+0=18。

大家可以自己随便试两个。

这是为什么呢?(下述i为质数)首先1~n中含有i这个因子的数有n/i个(1),含有i2这个因子的数有n/i2个(2),……含有im这个因子的数有n/im个(m)。那么我们分层计算贡献,首先(1)中有n/i个i,加上,(2)中有2*n/i2个i,但不要忘了,我们在(1)算过每个数中的一个i,那么它们的贡献只有n/i2个i,同理,向后类推,最后n!中i的个数为∑n/pi,与上述模拟过程一致。

那么我们来证明一下复杂度,首先根据小于N的质数约有N/lnN个,我们第一层枚举的代价就是O(N/lnN),然后观察上述过程,我们的问题规模不断缩小,如上述二例,都是1/2、1/2的速度在缩小,对于其他素数类似,我们取最坏O(log2N),那么总复杂度

O(N/lnN*log2N),这玩意换换底就是O(N/ln2),1/ln2≈1.44,撇掉,大约O(N),(这是我自己证的,网上目测没有,如果有异议请指出,应该没什么问题吧……)

然后分子加分母减拆完了拿快速幂一乘就完事了。(快速幂并不影响上述复杂度,因为qpow也是O(logk)的,就当常数大了吧)。

(底下代码有表机,勾掉的调试略多,可以用来自己见证一下上面那个算法的正确性)

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
int n,P,/*a[20],*/ans=;
/*bool check(){
for(int i=1;i<=n;i++)
if(a[i*2-1]>a[i*2]) return 0;
for(int i=3;i<=n*2;i++)
if(a[i]<a[i-2]) return 0;
return 1;
}*/
int prime[],prime_num;
bool v[];
void doprime(){
for(int i=;i<=*n+;i++){
if(!v[i]) prime[++prime_num]=i;
for(int j=;j<=prime_num&&i*prime[j]<=*n+;j++){
v[prime[j]*i]=;
if(i%prime[j]==) break;
}
}
}
int qpow(int x,int k){
int val=;
for(;k;k>>=,x=1ll*x*x%P)
if(k&) val=1ll*val*x%P;
return val%P;
}
int main(){
//打表找规律系列。。。
/* while(1){
ans=0;
scanf("%d%d",&n,&P);
for(int i=1;i<=(n<<1);i++)
a[i]=i;
do{
if(check()) {ans++;
for(int i=1;i<=2*n;i++)
cout<<a[i]<<" ";
cout<<endl;
}
}while(next_permutation(a+1,a+1+2*n));
printf("ANS=%d\n",ans);
}*/
scanf("%d%d",&n,&P);
doprime();
for(int i=;i<=prime_num;i++){
long long s=;
for(int j=*n;j/=prime[i];) s+=j;
// cout<<"s1="<<s<<endl;
for(int j=n;j/=prime[i];) s-=j;
//cout<<"s2="<<s<<endl;
for(int j=n+;j/=prime[i];) s-=j;
// cout<<"s3="<<s<<endl;
ans=1ll*ans*qpow(prime[i],s)%P;
}
// cout<<"Okprime"<<endl;
/* for(int i=1;i<=prime_num;i++)
cout<<prime[i]<<" ";cout<<endl;*/
/* for(int i=1;i<=2*n;i++)
mulfz(i);
for(int i=1;i<=n;i++)
mulfm(i);
for(int i=1;i<=n+1;i++)
mulfm(i);*/
/* cout<<"OKfenjie"<<endl;
for(int i=1;i<=prime_num;i++)
ans=1ll*ans*qpow(prime[i],fz[i]-fm[i])%P;
cout<<"Okqpow"<<endl;*/
printf("%d",ans);
return ;
}

这道题取模,下道题高精。

HNOI2009有趣的数列的更多相关文章

  1. BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )

    打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...

  2. BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]

    1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...

  3. BZOJ_1485_[HNOI2009]有趣的数列_卡特兰数

    BZOJ_1485_[HNOI2009]有趣的数列_卡特兰数 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ ...

  4. 【BZOJ1485】[HNOI2009]有趣的数列(组合数学)

    [BZOJ1485][HNOI2009]有趣的数列(组合数学) 题面 BZOJ 洛谷 题解 从小往大填数,要么填在最小的奇数位置,要么填在最小的偶数位置. 偶数位置填的数的个数不能超过奇数位置填的数的 ...

  5. [HNOI2009]有趣的数列 题解(卡特兰数)

    [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满 ...

  6. [HNOI2009]有趣的数列 卡特兰数

    题面:[HNOI2009]有趣的数列 题解: 观察到题目其实就是要求从长为2n的序列中选n个放在集合a,剩下的放在集合b,使得集合a和集合b中可以一一对应的使a中的元素小于b. 2种想法(实质上是一样 ...

  7. 「BZOJ1485」[HNOI2009] 有趣的数列 (卡特兰数列)

    「BZOJ1485」[HNOI2009] 有趣的数列   Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai ...

  8. 洛谷P3200 [HNOI2009]有趣的数列(Catalan数)

    P3200 [HNOI2009]有趣的数列 题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足 ...

  9. bzoj1485: [HNOI2009]有趣的数列(Catalan数)

    1485: [HNOI2009]有趣的数列 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2105  Solved: 1117[Submit][Stat ...

  10. [HNOI2009]有趣的数列(卡塔兰数,线性筛)

    [HNOI2009]有趣的数列 题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1< ...

随机推荐

  1. Java Web-Redis学习

    Java Web-Redis学习 基本概念 Redis是一款高性能的NOSQL系列的.非关系型数据库 NOSQL:not only SQL,是一系列非关系型数据库的总称,例如radis.hbase等数 ...

  2. Android studio如何连接三星手机

    打开Android studio,选择Trouble Shoot device connections: 这个菜单项会自动扫描本地已经用USB线连接的设备: 已经成功扫描出了我的Galaxy C7 P ...

  3. Nginx作为缓存服务

    缓存类型 (1) 服务器缓存 服务端缓存一般使用Memcache.Redis (2)代理缓存 (3)客户端缓存 代理缓存流程图 第一步:客户端第一次向Nginx请求数据a: 第二步:当Nginx发现缓 ...

  4. C#基础 - 定义变量,输入输出

    本节课主要讲解C#的发展历史及部分C#语言基础, 主要内容有:控制台程序的创建,输出,输入,定义变量,变量赋值,值覆盖,值拼接,值       打印,两种数据类型,整形类型转换 本节重点难点:定义变量 ...

  5. soapUI与post测试soap webservice接口

    之前装了SoapUI,最近装了Postman,分别用它们测试了WebService,下面为用法. 测试的在线WebService(数据来源于中国气象局)Endpoint: http://www.web ...

  6. HTML中使用图像

    插入图像 在页面中插入图像的标记只有一个,就是img标记. 语法为:<img src="图片地址" alt="下载失败时的替换文本" title='提示文 ...

  7. 每日一题-——LeetCode(486) 预测赢家

    题目描述: 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,…….每次一个玩家只能拿取一个分数,分数被拿取之后不再可取.直到 ...

  8. 算法102----360笔试(m进制不进位相加最大值)

    转自:https://blog.csdn.net/qq_18310041/article/details/99656445 import copy # m进制 m = 5 n = 5 line = [ ...

  9. LINUX 新手 入门 教程

    新手入门教程 点评: linux 入门 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声

  10. AJAX学习笔记——jQuery中的AJAX

    用jQuery实现Ajax jQuery.ajax([settings]) 1.type:类型, "POST"或"GET" ,默认为"GET" ...