• A decorator is a callable that takes another function as argument (the decorated function). The decorator may perform some processing with the decorated function, and returns it or replaces it with another function or callable object.

1. Variable Scope Rules

b = 6
def f1(a):
print(a) # 3
print(b) # 6
f1(3)
b = 6
def f2(a):
print(a) # 3
print(b) # UnboundLocalError: local variable 'b' referenced before assignment
b = 9
f2(3) # 1. When Python compiles the body of the function, it decides that b is a local
# variable because it's assigned within the function.
# 2. Python does not require you to declare variables, but assumes that a variable
# assigned in the body of a function is local
b = 6
def f3(a):
global b # declare
print(a) # 3
print(b) # 6
b = 9
f3(3)

2. Closures

  • Actually, a closure is a function with an extended scope that encompasses nonglobal variables referenced in the body of the function but not defined there. It does not matter whether the function is anonymous or not; what matters is that it can access nonglobal variables that are defined outside of its body.
  • A closure is a function that retains the bindings of the free variables that exist when the function is defined, so that they can be used later when the function is invoked and the defining scope is no longer available.
  • The only situation in which a function may need to deal with external variables that are nonglobal is when it is nested in another function.
def make_averager():
series = []
def averager(new_value):
series.append(new_value)
total = sum(series)
return total / len(series)
return averager avg = make_averager()
print avg(10) # 10
print avg(12) # 11
print avg(14) # 12
print avg.__code__.co_varnames # ('new_value', 'total')
print avg.__code__.co_freevars # ('series',)
print avg.__closure__ # (<cell at 0x1030d1280: list object at 0x1030a97e8>,)
print avg.__closure__[0].cell_contents # [10, 12, 14]

  • free variable: a variable that is not bound in the local scope.

3. The nonlocal Declaration

def make_averager():
count = 0
total = 0
def averager(new_value):
count += 1
total += new_value
return total / count
return averager avg = make_averager()
print avg(10) # UnboundLocalError: local variable 'count' referenced before assignment # 1. We actually assign count in the body of averager, and that makes it a local variable.
# 2. We didn't have this problem before, because we never assigned to the series name,
# we only called series.append and invoked sum and len on it.
# 3. With immutable types, if you try to rebind them, then you are implicitly creating a
# local variable, it's no longer a free variable, therefore it is not saved in the closure.
def make_averager():
count = 0
total = 0
def averager(new_value):
nonlocal count, total # **********
count += 1
total += new_value
return total / count
return averager avg = make_averager()
print(avg(10)) # 10.0 # 1. The nonlocal declaration was introduced in Python 3. It lets you flag a variable as a
# free variable even when it is assigned a new value within the function.

4. Implementing a Simple Decorator

  • Typical behavior of a decorator: It replaces the decorated function with a new function that accepts the same arguments and (usually) returns whatever the decorated function was supposed to return, while also doing some extra processing.
def deco(func):
print('running deco()')
print('func -> %s' % str(func))
def inner():
print('running inner()')
return inner @deco # target = deco(target)
def target():
print('running target()') target()
# running deco() # executed immediately when the module is loaded
# func -> <function target at 0x106c460c8>
# running inner()
print(target.__name__) # inner (function is replaced)
import time
FMT = '[{elapsed:0.8f}s] {name}({arg_str}) -> {result}'
def clock(func):
def clocked(*args, **kwargs):
t0 = time.time()
result = func(*args, **kwargs)
elapsed = time.time() - t0 # 用时
name = func.__name__
arg_lst = []
if args:
arg_lst.append(', '.join(repr(arg) for arg in args))
if kwargs:
pairs = ['%s=%r' % (k, w) for k, w in sorted(kwargs.items())]
arg_lst.append(', '.join(pairs))
arg_str = ', '.join(arg_lst)
print(FMT.format(**locals())) # any local variable of clocked
return result
return clocked @clock
def snooze(seconds):
time.sleep(seconds) @clock
def factorial(n):
return 1 if n < 2 else n*factorial(n-1) print('*' * 40, 'Calling snooze(.123)')
snooze(.123)
print('*' * 40, 'Calling factorial(6)')
print('6! =', factorial(6))
# ('****************************************', 'Calling snooze(.123)')
# [0.12694907s] snooze(0.123) -> None
# ('****************************************', 'Calling factorial(6)')
# [0.00000286s] factorial(1) -> 1
# [0.00004411s] factorial(2) -> 2
# [0.00005984s] factorial(3) -> 6
# [0.00007296s] factorial(4) -> 24
# [0.00014281s] factorial(5) -> 120
# [0.00015783s] factorial(6) -> 720
# ('6! =', 720)

5. Decorators in the Standard Library

5.1 functools.wraps

import functools
def deco(func):
@functools.wraps(func) # copy the relevant attributes from func to inner
def inner():
print('running inner()')
return inner @deco
def target():
"""i'm target"""
print('running target()') target() # running inner()
print(target.__name__) # target
print(target.__doc__) # i'm target

5.2 functools.lru_cache

  • An optimization technique that works by saving the results of previous invocations of an expensive function, avoiding repeat computations on previously used arguments.
  • The cache is limited by discarding the entries that have not been read for a while.
import functools
@functools.lru_cache() # Python 3
@clock
def fibonacci(n):
if n < 2:
return n
return fibonacci(n-2) + fibonacci(n-1) print(fibonacci(6))
# [0.00000095s] fibonacci(0) -> 0
# [0.00000215s] fibonacci(1) -> 1
# [0.00036097s] fibonacci(2) -> 1
# [0.00000167s] fibonacci(3) -> 2
# [0.00039101s] fibonacci(4) -> 3
# [0.00000095s] fibonacci(5) -> 5
# [0.00041699s] fibonacci(6) -> 8
# 8 # @functools.lru_cache(maxsize=128, typed=False)
# maxsize: how many call results are stored. (should be a power of 2)
# typed: True -> store results of different argument types separately (1 / 1.0)
# False -> don't store # [notes]: lru_cache uses a dict to store the results, all the arguments
# taken by the decorated function must be hashable.

5.3 functools.singledispatch

  • The new functools.singledispatch decorator in Python 3.4 allows each module to contribute to the overall solution, and lets you easily provide a specialized function even for classes that you can’t edit.
  • If you decorate a plain function with @singledispatch, it becomes a generic function: a group of functions to perform the same operation in different ways, depending on the type of the first argument.
from functools import singledispatch
from collections import abc
import numbers
import html @singledispatch # mark the base function handles the obj type.
def htmlize(obj):
content = html.escape(repr(obj))
return '<pre>{}</pre>'.format(content) @htmlize.register(str) # @«base_function».register(«type»).
def _(text): # name of the specialized functions is irrelevant
return '<p>{0}</p>'.format(html.escape(text)) @htmlize.register(numbers.Integral)
def _(n):
return '<pre>{0} (0x{0:x})</pre>'.format(n) @htmlize.register(tuple)
@htmlize.register(abc.MutableSequence)
def _(seq):
inner = '</li>\n<li>'.join(htmlize(item) for item in seq)
return '<ul>\n<li>' + inner + '</li>\n</ul>' print(htmlize(str)) # <pre><class 'str'></pre>
print(htmlize('<hello>')) # <p><hello></p>
print(htmlize(10)) # <pre>10 (0xa)</pre>
print(htmlize(['alpha', {3, 2, 1}]))
# <ul>
# <li><p>alpha</p></li>
# <li><pre>{1, 2, 3}</pre></li>
# </ul> # 1. Register the specialized functions to handle ABCs (abstract classes)
# instead of concrete implementations like int and list. (support more)
# 2. A notable quality of the singledispatch mechanism is that you can
# register specialized functions anywhere in the system, in any module.

6. Stacked Decorators

@d1
@d2
def f():
print('f') # f = d1(d2(f))

7. Parameterized Decorators

  • Make a decorator factory that takes those arguments and returns a decorator, which is then applied to the function to be decorated.
def outter(a=1):
def deco(func):
def inner():
if a == 1:
print(1)
else:
print(a)
return inner
return deco @outter()
def target1():
pass @outter(9)
def target2():
pass target1() # 1
target2() # 9

7. Function Decorators and Closures的更多相关文章

  1. 《流畅的Python》Data Structures--第7章 colsure and decorator

    Function Decorators and Closures 装饰器是用于增强函数的行为,理解它,就必须先理解闭包. Python3引入关键字nonlocal,如果要理解闭包,就必须了解它的所有方 ...

  2. 浅入浅出Typescript Decorators

    临时起的兴趣,想写一篇关于ts decorator的文章,就花小半天整理了一下...  这东西,在ES2017里好像也有... 文档的话看这里. 因为临时,就没想写太多文字介绍,带少许文字说明直接开撸 ...

  3. JavaScript Decorators 的简单理解

    Decorators,装饰器的意思, 所谓装饰就是对一个物件进行美化,让它变得更漂亮.最直观的例子就是房屋装修.你买了一套房子,但是毛坯房,你肯定不想住,那就对它装饰一下,床,桌子,电视,冰箱等一通买 ...

  4. TypeScript学习笔记(九):装饰器(Decorators)

    装饰器简介 装饰器(Decorators)为我们在类的声明及成员上通过元编程语法添加标注提供了一种方式. 需要注意的是:装饰器是一项实验性特性,在未来的版本中可能会发生改变. 若要启用实验性的装饰器特 ...

  5. 《dive into python3》 笔记摘录

    1.list can hold  arbitrary  objects and can expand dynamically as new items are added. A list is an  ...

  6. JAVASCRIPT的一些知识点梳理

    春节闲点,可以安心的梳理一下以前不是很清楚的东东.. 看的是以下几个URL: http://web.jobbole.com/82520/ http://blog.csdn.net/luoweifu/a ...

  7. [TypeScript] Reflection and Decorator Metadata

    TypeScript allows you to emit decorator metadata which enables more powerful features through reflec ...

  8. python函数与方法装饰器

    之前用python简单写了一下斐波那契数列的递归实现(如下),发现运行速度很慢. def fib_direct(n): assert n > 0, 'invalid n' if n < 3 ...

  9. 是什么让javascript变得如此奇妙

    What Makes Javascript Weird...and AWESOME -> First Class Functions -> Event-Driven Evironment ...

随机推荐

  1. EasyNetQ使用(三)【Publish与Subcribe】

    EasyNetQ支持的最简单的消息模式是发布/订阅.这个模式是一个极好的方法用来解耦消息提供者和消费者.消息发布者只要简单的对世界说,“这里有些事发生” 或者 “我现在有一个信息”.它不关心有没有人监 ...

  2. 学习Yii(2)

    Yii拥有很好的手册,还是中文的,官方的手册很详细.还是应该好好看一下.今天就开始跟着项目代码调试. 上次看到入口脚本,学习一定要快,要用心,抓住时间.不然时间拖久了就忘了.延续不上,大打折扣.而且要 ...

  3. Note 1: Good

    Note 1: Good 1. The collection of Linkun's [1]: 1.1coolJoy says "cool" when he heard that ...

  4. 【ARM-Linux开发】wayland和weston的介绍

    简单地说,Wayland是一套display server(Wayland compositor)与client间的通信协议,而Weston是Wayland compositor的参考实现.其官网为h ...

  5. eNSP——配置Trunk接口

    原理: 在以太网中,通过划分 VLAN 来隔离广播域和增强网络通信的安全性.以太网通常由多台交换机组成,为了使 VLAN 的数据帧跨越多台交换机传递,交换机之间互连的链路需要设置为干道链路( Trun ...

  6. 前端JS之HTML利用XMLHttpRequest()和FormData()进行大文件分段上传

    用于网页向后端上传大文件 ### 前端代码<body> <input type="file" name="video" id="fi ...

  7. uva11624 Fire! (bfs预处理)

    题目链接:https://vjudge.net/problem/UVA-11624 题意:给一个1000×1000的矩阵,有几个着火点和Joe,着火点和Joe每个单位时间均移动一个单位,求Joe逃出的 ...

  8. Spring mybatis源码篇章-Mybatis主文件加载

    通过阅读源码对实现机制进行了解有利于陶冶情操,承接前文Spring mybatis源码篇章-SqlSessionFactory 前话 本文承接前文的内容继续往下扩展,通过Spring与Mybatis的 ...

  9. 用JavaScript写一个简单的倒计时,可以应用在发送短信验证码的“59秒后重新发送验证短信”

    倒计时——从10倒数到0,点击按钮会还原倒计时 <body> <!-- 将textvalue值设为10,从10倒数 --> <input type="text& ...

  10. Django-djangorestframework-异常模块-源码及自定义异常

    目录 异常模块 为什么要自定义异常模块 常见的几种异常情况 异常模块源码分析 自定义 drf 异常处理 异常模块 为什么要自定义异常模块 所有经过 drf APIView 视图类产生的异常,都可以提供 ...