P1352 没有上司的舞会[树形dp]
题目描述
某大学有N个职员,编号为1~N。他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri,但是呢,如果某个职员的上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。
输入输出格式
输入格式:
第一行一个整数N。(1<=N<=6000)
接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)
接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。
最后一行输入0 0
输出格式:
输出最大的快乐指数。
输入输出样例
输入样例#1:
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0
输出样例#1:
5
解析:
这是一道相当经典的树形dp入门题。
树形\(dp\),顾名思义,就是在树这种数据结构上做\(dp\),所以要学习树形\(dp\),首先要学习树的储存结构和遍历方法。
显然,在这道题中,我们可以以树的深度作为阶段,用某个人的以他为根的子树的最优解作为状态,决策就是某个人来与不来。
那岂不就是直接开一个一维数组\(dp[]\)来做就得了?
其实不然。
我们会发现这样做忽略了在做当前决策时,之前做过的决策实际上是会当前决策影响的。
考虑如下情形:如果一个人的上司来了,那么他只有不来一种选择;如果一个人的上司没来,那么他既可以来也可以不来。然后这个人的决策又会影响到他的下属,继而传播到整颗子树。
因此,这道题是有后效性的。
不急,对于这种情况,我们再加一维把任意一个人来与不来的情况分开记录,就不会使最优解互相影响了。
假设\(dp[i][1]\)表示第\(i\)个人当前如果来的话的最优解,\(dp[i][0]\)就表示第\(i\)个人不来时的最优解。
初始化就是对于任意的一个人\(i\),有\(dp[i][0]=0,dp[i][1]=w[i]\),其中\(w[i]\)表示这个人的嗑嗨指数。
状态转移方程:
{dp[i][0]=\sum_{j \epsilon son(i)} max(dp[j][0],dp[j][1])}
\]
我们可以\(dfs\)一遍整棵树,在向下递归时初始化,向上递归时做\(dp\)。
参考代码:
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#define ri register int
const int N=6010;
const int INF=0x3f3f3f3f;
using namespace std;
inline int read()
{
int f=1,x=0;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
struct rec{
int next,ver;
}g[N<<1];
int head[N],tot,n,w[N];
int dp[N][2];
bool v[N],fa[N];
void add(int x,int y)
{
g[++tot].ver=y;
g[tot].next=head[x],head[x]=tot;
}
void calc(int x)
{
v[x]=1;
dp[x][0]=0;
dp[x][1]=w[x];
for(ri i=head[x];i;i=g[i].next){
int y=g[i].ver;
if(v[y]==1) continue;
calc(y);
dp[x][0]+=max(dp[y][1],dp[y][0]);
dp[x][1]+=dp[y][0];
}
}
int main()
{
n=read();
for(ri i=1;i<=n;i++) w[i]=read();
int x,y;
for(ri i=1;i<n;i++){
x=read(),y=read();
add(y,x);fa[x]=1;
}
getchar();getchar();
int root;
for(ri i=1;i<=n;i++){
if(!fa[i]){
root=i;
break;
}
}
calc(root);
cout<<max(dp[root][1],dp[root][0])<<endl;
return 0;
}
P1352 没有上司的舞会[树形dp]的更多相关文章
- 洛谷P1352 没有上司的舞会——树形DP
第一次自己写树形DP的题,发个博客纪念`- 题目来源:P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结 ...
- P1352 没有上司的舞会——树形DP入门
P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...
- P1352 没有上司的舞会&&树形DP入门
https://www.luogu.com.cn/problem/P1352 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...
- [luogu]P1352 没有上司的舞会[树形DP]
本Lowbee第一次写树形DP啊,弱...一个变量写错半天没看出来...... 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点 ...
- 洛谷 P1352 没有上司的舞会 树形DP板子
luogu传送门 题目描述: 某大学有n个职员,编号为1~n. 他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司. 现在有个周年庆宴会,宴会每邀请来一个职员都会 ...
- 洛谷 P1352 没有上司的舞会(树形 DP)
题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...
- 『没有上司的舞会 树形DP』
树形DP入门 有些时候,我们需要在树形结构上进行动态规划来求解最优解. 例如,给定一颗\(N\)个节点的树(通常是无根树,即有\(N-1\)条无向边),我们可以选择任意节点作为根节点从而定义出每一颗子 ...
- CodeVS1380 没有上司的舞会 [树形DP]
题目传送门 没有上司的舞会 题目描述 Description Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个 ...
- 没有上司的舞会 树形dp
题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...
随机推荐
- Linux终极shell-zsh的完美配置方案!——oh-my-zsh
Zsh 介绍 Zsh 兼容 Bash,据传说 99% 的 Bash 操作 和 Zsh 是相同的 Zsh 官网:http://www.zsh.org/ 先看下你的 Linux支持哪些 shell:cat ...
- 微信小程序填坑,wx.request() 内调用setData()方法错误的解决办法
再方法内添加一行代码,把this对象赋值给给一个变量供success()方法内调用 核心代码: var v = this.txt; 完整示例 abc:function(e){//该函数用于和后台交互 ...
- idea的项目转maven项目
鼠标右键pom.xml>>>>>> Add as Maven Project
- jqgrid重新加载后跳到指定页
一般要求重新加载jqgrid后是跳到第一页 $("#jqgrid").jqGrid('setGridParam',{ datatype:'json', page:1 }).trig ...
- poj 1852&3684 题解
poj 1852 3684 这两题思路相似就放在一起. 1852 题意 一块长为L长度单位的板子(从0开始)上有很多只蚂蚁,给出它们的位置,它们的方向不确定,速度为每秒一长度单位,当两只蚂蚁相遇的时候 ...
- 剑指offer25:复杂链表(每个节点中有节点值,以及两个指针,一个指向下一个节点,另一个特殊指针指向任意一个节点),结果返回复制后复杂链表的head。
1 题目描述 输入一个复杂链表(每个节点中有节点值,以及两个指针,一个指向下一个节点,另一个特殊指针指向任意一个节点),返回结果为复制后复杂链表的head.(注意,输出结果中请不要返回参数中的节点引用 ...
- python 之 并发编程(生产者消费者模型、守护进程的应用)
9.8 生产者消费者模型 该模型中包含两类重要的角色: 1.生产者:将负责造数据的任务比喻为生产者 2.消费者:接收生产者造出的数据来做进一步的处理的被比喻成消费者 实现生产者消费者模型三要素:1.生 ...
- 《MySQL数据库从入门到精通》 高级运维人才的必备书籍
众所周知,每年就业市场都会迎来千万量级的高校毕业生,然而企业招工难和毕业生就业难的矛盾却一直没有得到很好地解决.究其原因,主要矛盾还是在于传统的学历教育与企业实际需求相脱节.为了杜绝高校毕业生求职时常 ...
- 地址解析协议(ARP)
地址解析协议(ARP) 地址解析协议(ARP)是指网络地址和MAC地址之间的转换 当一台主机需要向另一台主机发送数据时,需要知道目的主机的ip地址外还需要知道目的主机的mac地址.源主机首先会在自己的 ...
- C++11 特性
之前工作中开发/维护的模块大多都是 "远古代码",只能编译 C++98,很多 C++11 的特性都忘得差不多了,再回顾一下 右值引用&转移语义: 消除两个对象交互时不必要的 ...