官方文档:

https://networkx.github.io/documentation/networkx-1.10/reference/algorithms.html

最短路和最小生成树:

import networkx as nx
import matplotlib.pyplot as plt G = nx.Graph()
#G.add_node(1) #添加一个节点1
#G.add_edge(2,3,10) #添加一条边2-3(隐含着添加了两个节点2、3)
#G.add_edge(3,2) #对于无向图,边3-2与边2-3被认为是一条边
#G.add_weighted_edges_from([(1,2,8)])
#G.add_weighted_edges_from([(1,3,10)])
#G.add_weighted_edges_from([(2,3,6)]) G.add_edge('A', 'B', weight=4)
G.add_edge('B', 'D', weight=2)
G.add_edge('A', 'C', weight=3)
G.add_edge('C', 'D', weight=5)
G.add_edge('A', 'D', weight=6)
G.add_edge('C', 'F', weight=7)
G.add_edge('A', 'G', weight=1)
G.add_edge('H', 'B', weight=2)
for u,v,d in G.edges(data=True):
print(u,v,d['weight'])
edge_labels=dict([((u,v,),d['weight']) for u,v,d in G.edges(data=True)])
#fixed_position = {'A':[ 1., 2.],
# 'B': [ 1., 0.],
# 'D': [ 5., 5.],
# 'C': [ 0.,6.]}#每个点在坐标轴中的位置
#pos=nx.spring_layout(G,pos = fixed_position)#获取结点的位置,每次点的位置都是随机的
pos = nx.spring_layout(G) #也可以不固定点
nx.draw_networkx_edge_labels(G,pos,edge_labels=edge_labels,font_size=14)#绘制图中边的权重 print(edge_labels)
print("nodes:", G.nodes()) #输出全部的节点: [1, 2, 3]
print("edges:", G.edges()) #输出全部的边:[(2, 3)]
print("number of edges:", G.number_of_edges()) #输出边的数量 nx.draw_networkx(G,pos,node_size=400)
plt.savefig("wuxiangtu.png")
plt.show() # 生成邻接矩阵
mat = nx.to_numpy_matrix(G)
print(mat) # 计算两点间的最短路
# dijkstra_path
print('dijkstra方法寻找最短路径:')
path=nx.dijkstra_path(G, source='H', target='F')
print('节点H到F的路径:', path)
print('dijkstra方法寻找最短距离:')
distance=nx.dijkstra_path_length(G, source='H', target='F')
print('节点H到F的距离为:', distance) # 一点到所有点的最短路
p=nx.shortest_path(G,source='H') # target not specified
d=nx.shortest_path_length(G,source='H')
for node in G.nodes():
print("H 到",node,"的最短路径为:",p[node])
print("H 到",node,"的最短距离为:",d[node]) # 所有点到一点的最短距离
p=nx.shortest_path(G,target='H') # target not specified
d=nx.shortest_path_length(G,target='H')
for node in G.nodes():
print(node,"到 H 的最短路径为:",p[node])
print(node,"到 H 的最短距离为:",d[node]) # 任意两点间的最短距离
p=nx.shortest_path_length(G)
p=dict(p)
d=nx.shortest_path_length(G)
d=dict(d)
for node1 in G.nodes():
for node2 in G.nodes():
print(node1,"到",node2,"的最短距离为:",d[node1][node2]) # 最小生成树
T=nx.minimum_spanning_tree(G) # 边有权重
print(sorted(T.edges(data=True))) mst=nx.minimum_spanning_edges(G,data=False) # a generator of MST edges
edgelist=list(mst) # make a list of the edges
print(sorted(edgelist)) # 使用A *算法的最短路径和路径长度
p=nx.astar_path(G, source='H', target='F')
print('节点H到F的路径:', path)
d=nx.astar_path_length(G, source='H', target='F')
print('节点H到F的距离为:', distance) # 找回路
hl = nx.algorithms.find_cycle(G)
print(hl) # 二分图匹配
G = nx.complete_bipartite_graph(2, 3)
nx.draw_networkx(G)
left, right = nx.bipartite.sets(G)
list(left) #[0, 1]
list(right) #[2, 3, 4]
p = nx.bipartite.maximum_matching(G)
print("输出匹配:",p) # 最大流
# graph's maximum flow
# flow is computed between vertex 0 and vertex n-1
# expected input format:
# n
# m
#g = nx.DiGraph()
#n, m = int(input()), int(input())
#for i in range(n):
# g.add_node(i)
#for _ in range(m):
# a, b, c = [ int(i) for i in input().split(' ') ]
# g.add_edge(a, b, capacity=c)
#max_flow = nx.algorithms.flow.maxflow.maximum_flow(g, 0, n-1)[0]
#print(max_flow)
g = nx.DiGraph()
n, m = 4, 5
for i in range(n):
g.add_node(i)
edge=["0 1 3","1 3 2","0 2 2","2 3 3","0 3 1"]
for x in edge:
a, b, c = [ int(i) for i in x.split(' ') ]
g.add_edge(a, b, capacity=c)
nx.draw(g)
max_flow = nx.algorithms.flow.maxflow.maximum_flow(g, 0, n-1)[0]
print(max_flow)

python图论包networks(最短路,最小生成树带包)的更多相关文章

  1. javac编译带包的java文件需要在命令处加参数

    不带包:javac aaa.java 带包:javac -d . aaa.java 带包就是 java文件中含有 package com.aaa;

  2. matlab学习——04图与网络(最短路,最小生成树,最大流)

    04图与网络 1.最短路 (1) 自己写的dijstra算法 format compact; clc,clear all a=zeros(6); a(1,2)=50;a(1,4)=40;a(1,5)= ...

  3. Python之旅.第四章.模块与包.总结(未完待遇)

    一.模块 模块: 一系列功能的集合体,在python中一个py文件就是一个模块,模块名就是py文件的文件名: 模块的好处: 1.减少重复的代码 2.拿来主义 定义模块: 就是创建一个py文件: 使用模 ...

  4. Python【第四课】 模块 and 包

    本篇内容 模块基础和导入(import,from...import...) 包常识和导入(import,from...import...) 函数式第一类对象 1.模块基础和导入 1.1 模块认识 什么 ...

  5. Python数据分析必备Anaconda安装、快捷键、包安装

    Python数据分析必备: 1.Anaconda操作 Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统,提供了包管理与环境管理的功能,可以很方便 ...

  6. Py修行路 python基础 (二十三)模块与包

    一.模块 1)定义: 模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 2)为何要用模块: 退出python解释器然后重新进入,那之前定义的函数或者变量都将丢失,因 ...

  7. python's twenty ninthday for me 模块和包

    模块 和 脚本的 区别:   如果一个py文件被导入了,就是一个模块. 如果这个py文件被直接执行,这个被直接执行的文件就是一个脚本. 模块:1,没有具体的调用过程.2,能对外提供功能. pyc文件: ...

  8. Python及bs4、lxml、numpy模块包的安装

    http://blog.csdn.net/tiantiancsdn/article/details/51046490(转载) Python及bs4.lxml.numpy模块包的安装 Python 的安 ...

  9. Python标准库08 多线程与同步 (threading包)

    Python主要通过标准库中的threading包来实现多线程.在当今网络时代,每个服务器都会接收到大量的请求.服务器可以利用多线程的方式来处理这些请求,以提高对网络端口的读写效率.Python是一种 ...

随机推荐

  1. PyQt5多个GUI界面设计

    版权声明:本文为博主原创文章,转载 请注明出处:https://blog.csdn.net/sc2079/article/details/90454379 - 写在前面 本科毕业设计终于告一段落了.特 ...

  2. SQL性能优化思路

    1. 尽可能把数据的存储和计算放入Memory而不是Disk,且减少IO操作,比如运用Redis等缓存技术 2. 对数据表进行精心设计,特别是大数据表,对常用数据字段进行适当的冗余,尽可能避免分表导致 ...

  3. Oracle 物理结构(二) 文件-口令文件

    一.口令文件作用 1.口令文件基本介绍 Oracle数据库口令文件存放有超级用户的口令及其他特殊用户的用户名/口令. 口令文件在数据库创建时,自动创建,存放在$ORACLE_HOME/dbs. 此文件 ...

  4. [Luogu] 借教室

    https://www.luogu.org/problemnew/show/P1083 二分第i天不满足 前缀和 + 差分判断 #include <iostream> #include & ...

  5. 【poj2431】驾驶问题-贪心,优先队列

    Expedition Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29360   Accepted: 8135 Descr ...

  6. JS 的 new 到底是干什么的?

    大部分讲 new 的文章会从面向对象的思路讲起,但是我始终认为,在解释一个事物的时候,不应该引入另一个更复杂的事物. 今天我从「省代码」的角度来讲 new. --------------------- ...

  7. C语言学习笔记11- 文件I/O

    C语言学习笔记11- 文件I/O  ..待编辑 文件操作(CRT.C++.WIN API.MFC)

  8. docker容器中查看容器linux版本

    root@dae5aecea3dd:~# cat /etc/issue Ubuntu LTS \n \l

  9. redis之订阅功能

    redis订阅 Redis 通过 PUBLISH . SUBSCRIBE 等命令实现了订阅与发布模式. 举例1: qq群的公告,单个发布者,多个收听者 发布/订阅 实验 命令 PUBLISH chan ...

  10. 3.5寸1.44M软盘结构

    结构: 划分: 簇:磁盘驱动器在向磁盘读取和写入数据时,要以扇区为单位.在磁盘上,DOS操作系统是以“簇”为单位为文件分配磁盘空间的.硬盘的簇通常为多个扇区,与磁盘的种类.DOS 版本及硬盘分区的大小 ...