链接:

https://codeforces.com/contest/1228/problem/C

题意:

Let's introduce some definitions that will be needed later.

Let prime(x) be the set of prime divisors of x. For example, prime(140)={2,5,7}, prime(169)={13}.

Let g(x,p) be the maximum possible integer pk where k is an integer such that x is divisible by pk. For example:

g(45,3)=9 (45 is divisible by 32=9 but not divisible by 33=27),

g(63,7)=7 (63 is divisible by 71=7 but not divisible by 72=49).

Let f(x,y) be the product of g(y,p) for all p in prime(x). For example:

f(30,70)=g(70,2)⋅g(70,3)⋅g(70,5)=21⋅30⋅51=10,

f(525,63)=g(63,3)⋅g(63,5)⋅g(63,7)=32⋅50⋅71=63.

You have integers x and n. Calculate f(x,1)⋅f(x,2)⋅…⋅f(x,n)mod(109+7).

思路:

对于x的每个质约数, 计算其在n!内的乘积总和.

先得到x的质约数, 对于每个质数p, 其在n!内存在n/p^1, n/p^2....因为算的时候不断累加后面, 所有算一边即可.

快速幂优化.

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MOD = 1e9+7; vector<int> Pri; void Init(LL val)
{
for (LL i = 2;i*i <= val;i++)
{
if (val%i == 0)
Pri.push_back(i);
while (val%i == 0)
val /= i;
}
if (val != 1)
Pri.push_back(val);
} LL Cal(LL val, int p)
{
//素数p在val的阶乘下的次方贡献
LL cnt = 0;
while (val)
{
cnt += val/p;
val /= p;
}
return cnt;
} LL QucikMi(LL a, LL b)
{
LL res = 1;
while (b)
{
if (b&1)
res = (res*a)%MOD;
a = (a*a)%MOD;
b >>= 1;
}
return res;
} int main()
{
LL x, n;
cin >> x >> n;
Init(x);
LL res = 1;
for (int i = 0;i < Pri.size();i++)
{
LL cnt = Cal(n, Pri[i]);
res = (res*(QucikMi(Pri[i], cnt)))%MOD;
}
cout << res%MOD << endl; return 0;
}

Codeforces Round #589 (Div. 2) C - Primes and Multiplication(数学, 质数)的更多相关文章

  1. Codeforces Round #589 (Div. 2)-E. Another Filling the Grid-容斥定理

    Codeforces Round #589 (Div. 2)-E. Another Filling the Grid-容斥定理 [Problem Description] 在\(n\times n\) ...

  2. Codeforces Round #368 (Div. 2) C. Pythagorean Triples(数学)

    Pythagorean Triples 题目链接: http://codeforces.com/contest/707/problem/C Description Katya studies in a ...

  3. Codeforces Round #622 (Div. 2) B. Different Rules(数学)

    Codeforces Round #622 (Div. 2) B. Different Rules 题意: 你在参加一个比赛,最终按两场分赛的排名之和排名,每场分赛中不存在名次并列,给出参赛人数 n ...

  4. Codeforces Round #589 (Div. 2)

    目录 Contest Info Solutions A. Distinct Digits B. Filling the Grid C. Primes and Multiplication D. Com ...

  5. Codeforces Round #589 (Div. 2) (e、f没写)

    https://codeforces.com/contest/1228/problem/A A. Distinct Digits 超级简单嘻嘻,给你一个l和r然后寻找一个数,这个数要满足的条件是它的每 ...

  6. Codeforces Round #284 (Div. 2)A B C 模拟 数学

    A. Watching a movie time limit per test 1 second memory limit per test 256 megabytes input standard ...

  7. Codeforces Round #315 (Div. 1) A. Primes or Palindromes? 暴力

    A. Primes or Palindromes?Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3261 ...

  8. Codeforces Round #315 (Div. 2) C. Primes or Palindromes? 暴力

    C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes input st ...

  9. Codeforces Round 589 (Div. 2) 题解

    Is that a kind of fetishism? No, he is objectively a god. 见识了一把 Mcdic 究竟出题有多神. (虽然感觉还是吹过头了) 开了场 Virt ...

随机推荐

  1. Linux IO模式以及select poll epoll详解

    一 背景 同步IO和异步IO,阻塞IO和非阻塞IO分别是什么,到底有什么区别?不同的人在不同的上下文下给出的答案是不同的.所以先限定一下本文的上下文. 本文讨论的背景是Linux环境下的network ...

  2. Pangu and Stones(HihoCoder-1636)(17北京OL)【区间DP】

    题意:有n堆石头,盘古每次可以选择连续的x堆合并,所需时间为x堆石头的数量之和,x∈[l,r],现在要求,能否将石头合并成一堆,如果能,最短时间是多少. 思路:(参考了ACM算法日常)DP[i][j] ...

  3. 第一章、web应用安全概论--web应用系统介绍--TCP/IP协议

    TCP/IP协议源于1969年,是国际互联网Internet采用的协议标准TCP/IP协议是一组通信协议的代名词,是由一系列协议组成的协议族,本身是指两个协议集:    TCP--传输控制协议    ...

  4. Python 运算符与数据类型

    Python 的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语言的一种继承.Py ...

  5. java中锁的应用

    锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized(重量级) 和 ReentrantLock(轻量级)等等 ) .这些已经写好提供的锁为我们开发提供了便利. ...

  6. Linux安装配置go运行环境

    1. 下载go,解压 gz包 wget https://storage.googleapis.com/golang/go1.7.5.linux-amd64.tar.gz tar zxvf go1.7. ...

  7. Flutter 35: 图解自定义 View 之 Canvas (二)

    小菜前几天整理了以下 Canvas 的部分方法,今天小菜继续学习 Canvas 第二部分. drawXXX drawShadow 绘制阴影 drawShadow 用于绘制阴影,第一个参数时绘制一个图形 ...

  8. TTP223 触摸按键

    正面 反面 模式设置 可替代按键开关

  9. 【Distributed】限流技巧

    一.概述 1.1 高并发服务限流特技 1.2 为什么要互联网项目要限流 1.3 高并发限流解决方案 二.限流算法 2.1 计数器 2.2 滑动窗口计数 2.3 令牌桶算法 使用RateLimiter实 ...

  10. Bootstrap treegrid 实现树形表格结构

    前言 :最近的项目中需要实现树形表格功能,由于前端框架用的是bootstrap,但是bootstrapTable没有这个功能所以就找了一个前端的treegrid第三方组件进行了封装.现在把这个封装的组 ...