Gym 100548F Color 给花染色 容斥+组合数学+逆元 铜牌题
Problem F. Color
Description
Recently, Mr. Big recieved n flowers from his fans. He wants to recolor those flowers with
m colors. The flowers are put in a line. It is not allowed to color any adjacent flowers with
the same color. Flowers i and i + 1 are said to be adjacent for every i, 1 ≤ i < n. Mr. Big
also wants the total number of different colors of the n flowers being exactly k.
Two ways are considered different if and only if there is at least one flower being colored
with different colors.
Input
The first line of the input gives the number of test cases, T. T test cases follow. T is about
300 and in most cases k is relatively small.
For each test case, there will be one line, which contains three integers n, m, k (1 ≤ n, m ≤
109
, 1 ≤ k ≤ 106
, k ≤ n, m).
Output
For each test case, output one line containing “Case #x: y”, where x is the test case
number (starting from 1) and y is the number of ways of different coloring methods modulo
109 + 7.
Samples
Sample Input Sample Output
2
3 2 2
3 2 1
Case #1: 2
Case #2: 0
题意:给你N朵花,M种颜料(n,m<=1e9),要求给所有花染色,且相邻的花不能用同样的颜色,求出最后恰好用了k种
颜料的方案数(k<=1e5)
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#define MM(a,b) memset(a,b,sizeof(a));
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
#define CT continue
#define SC scanf
const int N=1e6+10;
const int mod=1e9+7;
int cas,n,m,k,kk;
ll C[N],inv[N]; ll _pow(ll a,ll b)
{
ll res=1;
while(b){
if(b&1) res=(res*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return res;
} void init_yuan()
{
inv[1]=1;
for(int i=2;i<=1e6;i++){
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
}
}//求逆元模板 void init_cki()
{
C[0]=1;
for(int i=0;i<k;i++){
C[i+1]=C[i]*(k-i)%mod*inv[i+1]%mod;
}
}//预处理C(k,i) ll c(ll m,ll k)
{
ll res=1;
k=min(k,m-k);
for(int i=0;i<k;i++){
res=res*(m-i)%mod;
}
for(int i=0;i<k;i++){
res=res*inv[i+1]%mod;
}
return res;
}//求C(m,k) int main()
{
kk=0;
init_yuan();
SC("%d",&cas);
while(cas--) {
SC("%d%d%d",&n,&m,&k);
init_cki();
ll ans=k*_pow(k-1,n-1)%mod,res=0;
for(int i=1;i<=k-2;i++) {
if(i%2) res+=C[i]*(k-i)%mod*_pow(k-i-1,n-1)%mod;
else res=(res-C[i]*(k-i)%mod*_pow(k-i-1,n-1)+mod)%mod;
}
ans=(ans-res+mod)%mod;
ans=(ans*c(m,k))%mod;
printf("Case #%d: %lld\n",++kk,ans);
}
return 0;
}
错因分析:刚开始想的是直接在n上容斥,,果然是太过复杂,,,就挂了;;
解答:1.可以转换下思路,,如果当前选了k种,那么涂完后花的颜色不超过k种的方案数为S=k*_pow(k-1,n-1),想象其是一个集合,设a[i](1<=i<=k)代表第i种颜料并没有用到,那么那么此情况下答案就为S-(a[1]并a[2]并...a[k])的面积,但是后面这个部分肯定是a[1]和a[2]等这些存在交集,所以就需要容斥了,最后因为存在C(m,k)种情况所以答案出来后还要乘C(m,k)
2.除法取模需要用到逆元,见资料
Gym 100548F Color 给花染色 容斥+组合数学+逆元 铜牌题的更多相关文章
- 2015 asia xian regional F Color (容斥 + 组合数学)
2015 asia xian regional F Color (容斥 + 组合数学) 题目链接http://codeforces.com/gym/100548/attachments Descrip ...
- P4491 [HAOI2018]染色 容斥+NTT
$ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 ...
- LOJ.6160.[美团CodeM初赛 RoundA]二分图染色(容斥 组合)
题目链接 \(Description\) 求在\(2n\)个点的完全二分图(两边各有\(n\)个点)上确定两组匹配,使得两个匹配没有交集的方案数. \(n\leq10^7\). \(Solution\ ...
- LOJ2527 HAOI2018 染色 容斥、生成函数、多项式求逆
传送门 调了1h竟然是因为1004535809写成了998244353 "恰好有\(K\)种颜色出现了\(S\)次"的限制似乎并不容易达到,考虑容斥计算. 令\(c_j\)表示强制 ...
- 2019.02.09 codeforces gym 100548F. Color(容斥原理)
传送门 题意简述:对n个排成一排的物品涂色,有m种颜色可选. 要求相邻的物品颜色不相同,且总共恰好有K种颜色,问所有可行的方案数.(n,m≤1e9,k≤1e6n,m\le1e9,k\le1e6n,m≤ ...
- Gym 100548F Color 2014-2015 ACM-ICPC, Asia Xian Regional Contest (容斥原理+大数取模)
题意:有N朵花,在M种颜色中选择恰好k种不同的颜色,将这N朵花染色,要求相邻的两朵花颜色不相同. 分析:若限制改为选择不超过k种颜色将N朵花朵染色,则方案数\(f(N,k) = k*(k-1)^{N- ...
- 组队赛Day1第一场 GYM 101350 G - Snake Rana (容斥)
[题意] 给一个N×M的矩阵, K个地雷的坐标.求不含地雷的所有矩形的总数. T组数据. N M都是1e4,地雷数 K ≤ 20 Input 3 2 2 1 2 2 6 6 2 5 2 2 5 100 ...
- BZOJ2839:集合计数(容斥,组合数学)
Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...
- 【BZOJ4559】[JLoi2016]成绩比较 动态规划+容斥+组合数学
[BZOJ4559][JLoi2016]成绩比较 Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M-1的整数.一 ...
随机推荐
- 牛客 26E 珂学送分2 (状压dp)
珂...珂...珂朵莉给你出了一道送分题: 给你一个长为n的序列{vi},和一个数a,你可以从里面选出最多m个数 一个合法的选择的分数定义为选中的这些数的和加上额外规则的加分: 有b个额外的规则,第i ...
- 怎样查看 MySQL 版本号
1. 在命令行中直接查看版本号 mysql -V 2. 在 mysql --help 中查找与版本相关的信息 mysql --help | grep Ver 3. 在mysql命令行里面查看版本信息 ...
- C++反汇编第一讲,不同作用域下的构造和析构的识别
目录大纲: 1.全局(静态)对象的识别,(全局静态全局一样的,都是编译期间检查,所以当做全局对象看即可.) 1.1 探究本质,理解构造和析构的生成,以及调用方式(重要,如果不想知道,可以看总结.) 2 ...
- el-table 单元格样式修改
<el-table :cell-style="set_cell_style"> set_cell_style({row, column, rowIndex, colum ...
- C# switch语句的使用
1 今天我们来学习switch 语句的使用,switch 语句和if else 类似 switch 语句主要的作用是用于来判断在规定条件下 根据你的选择来执行switch 语句下面case :的 ...
- c# redis密码验证笔记
参考博客https://www.cnblogs.com/qukaicheng/p/7514168.html写的 安装教程https://www.redis.net.cn/tutorial/3503.h ...
- 用Python获取黄石市近7天天气预报
首先,我们打开中国天气网,找到黄石市近7天天气的网页.http://www.weather.com.cn/weather/101200601.shtml 然后按F12开始分析网页结构,找到各个标签,并 ...
- Python打
.智能识别图片物体.这步是智能垃圾分类的魔法核心.原理是人工智能会根据打上标签的海量图片来识别新的图片所归属的分类标签.好奇的读者可能会问,我没学过深度学习啊?我也不会训练模型,怎么办? python ...
- 说说css hack,说真的,我也是才去了解这个东西
之前在很多地方看到css hack,今天狠下心,看看到底是什么鬼,所有我去百度了,然后看了一篇文章,然后写个小总结. css hack就是通过加一些特定的符号,不同的浏览器可以识别特定符号的样式,以此 ...
- java web开发跨域问题
分布式环境,前后端分离背景下跨域问题 1.1 设置页面document.domain去把2个页面之间的跨域交互统一 一级域名相同的情况下 调用者和页面提供者进行一个协调 页面提供者要在document ...