Pytorch 1.0.0 学习笔记:

Pytorch 的学习可以参考:Welcome to PyTorch Tutorials

Pytorch 是什么?

快速上手 Pytorch!

Tensors(张量)

from __future__ import print_function
import torch

创建一个没有初始化的 \(5\times 3\) 矩阵:

x = torch.empty(5, 3)
print(x)
tensor([[0.0000e+00, 0.0000e+00, 0.0000e+00],
[0.0000e+00, 0.0000e+00, 0.0000e+00],
[0.0000e+00, 0.0000e+00, 0.0000e+00],
[0.0000e+00, 1.9730e-42, 0.0000e+00],
[0.0000e+00, 7.3909e+22, 0.0000e+00]])

创建一个已经初始化的 \(5\times 3\) 的随机矩阵:

x = torch.rand(5, 3)
print(x)
tensor([[0.2496, 0.8405, 0.7555],
[0.9820, 0.9988, 0.5419],
[0.6570, 0.4990, 0.4165],
[0.6985, 0.9972, 0.4234],
[0.0096, 0.6374, 0.8520]])

给定数据类型为 long 的 \(5\times 3\) 的全零矩阵:

x = torch.zeros(5, 3, dtype=torch.long)
print(x)
tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])

直接从 list 中创建张量:

x = torch.tensor([5.5, 3])  # list
print(x)
tensor([5.5000, 3.0000])

直接从 Numpy 中创建张量:

import numpy as np
a = np.array([2, 3, 5], dtype='B')
x = torch.tensor(a) # numpy
print(x)
x.numel() # Tensor 中元素的个数
tensor([2, 3, 5], dtype=torch.uint8)

3
x = torch.rand(5, 3)
size = x.size()
print(size)
h, w = size
h, w
torch.Size([5, 3])

(5, 3)

Operations(运算)

Tensor 的运算大都与 Numpy 相同,下面仅仅介绍一些特殊的运算方式:

x = x.new_ones(5, 3, dtype=torch.double)      # new_* methods take in sizes
print(x) x = torch.randn_like(x, dtype=torch.float) # override dtype!
print(x)
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], dtype=torch.float64)
tensor([[-0.9367, -0.1121, 1.9103],
[ 0.2284, 0.3823, 1.0877],
[-0.2797, 0.7217, -0.7032],
[ 0.9047, 1.7789, 0.4215],
[-1.0368, -0.2644, -0.7948]])
result = torch.empty(5, 3)  # 创建一个为初始化的矩阵
y = torch.rand(5, 3) torch.add(x, y, out=result) # 计算 x + y 并将结果赋值给 result
print(result)
tensor([[-0.0202,  0.6110,  2.8150],
[ 1.0288, 1.2454, 1.7464],
[-0.1786, 0.8212, -0.2493],
[ 1.5294, 2.2713, 0.8383],
[-0.9292, 0.5749, -0.1146]])

任何一个 可变的 tensor 所对应的运算在其适当的位置后加上 _, 便会修改原 tensor 的值:

x = torch.tensor([7])
y = torch.tensor([2])
print(y, y.add(x))
print(y, y.add_(x))
y
tensor([2]) tensor([9])
tensor([9]) tensor([9]) tensor([9])
x = torch.tensor(7)
x.item() # 转换为 python 的 number
7

reshape tensor:veiw()

x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8) # the size -1 is inferred from other dimensions
print(x.size(), y.size(), z.size())
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

NumPy Bridge(与 Numpy 交互)

Tensor 转换为 Numpy

a = torch.ones(5)
print(a)
tensor([1., 1., 1., 1., 1.])

Tensor 转换为 Numpy

b = a.numpy()
print(b)
[1. 1. 1. 1. 1.]

_ 的作用依然存在:

a.add_(1)
print(a)
print(b)
tensor([2., 2., 2., 2., 2.])
[2. 2. 2. 2. 2.]

Numpy 转换为 Tensor

import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)
[2. 2. 2. 2. 2.]
tensor([2., 2., 2., 2., 2.], dtype=torch.float64)

CUDA

使用 .to 方法,Tensors 可被移动到任何 device:

# let us run this cell only if CUDA is available
# We will use ``torch.device`` objects to move tensors in and out of GPU
if torch.cuda.is_available():
device = torch.device("cuda") # a CUDA device object
y = torch.ones_like(x, device=device) # directly create a tensor on GPU
x = x.to(device) # or just use strings ``.to("cuda")``
z = x + y
print(z)
print(z.to("cpu", torch.double)) # ``.to`` can also change dtype together!
tensor(8, device='cuda:0')
tensor(8., dtype=torch.float64)

更多内容参考:我的github: https://github.com/XNoteW/Studying/tree/master/PyTorch_beginner

Pytorch 基础的更多相关文章

  1. [人工智能]Pytorch基础

    PyTorch基础 摘抄自<深度学习之Pytorch>. Tensor(张量) PyTorch里面处理的最基本的操作对象就是Tensor,表示的是一个多维矩阵,比如零维矩阵就是一个点,一维 ...

  2. 【新生学习】第一周:深度学习及pytorch基础

    DEADLINE: 2020-07-25 22:00 写在最前面: 本课程的主要思路还是要求大家大量练习 pytorch 代码,在写代码的过程中掌握深度学习的各类算法,希望大家能够坚持练习,相信经度过 ...

  3. pytorch基础学习(二)

    在神经网络训练时,还涉及到一些tricks,如网络权重的初始化方法,优化器种类(权重更新),图片预处理等,继续填坑. 1. 神经网络初始化(Network Initialization ) 1.1 初 ...

  4. PyTorch基础——词向量(Word Vector)技术

    一.介绍 内容 将接触现代 NLP 技术的基础:词向量技术. 第一个是构建一个简单的 N-Gram 语言模型,它可以根据 N 个历史词汇预测下一个单词,从而得到每一个单词的向量表示. 第二个将接触到现 ...

  5. pytorch 基础内容

    一些基础的操作: import torch as th a=th.rand(3,4) #随机数,维度为3,4的tensor b=th.rand(4)print(a)print(b) a+b tenso ...

  6. pytorch基础教程1

    0.迅速入门:根据上一个博客先安装好,然后终端python进入,import torch ******************************************************* ...

  7. 【pytorch】pytorch基础学习

    目录 1. 前言 # 2. Deep Learning with PyTorch: A 60 Minute Blitz 2.1 base operations 2.2 train a classifi ...

  8. Pytorch基础(6)----参数初始化

    一.使用Numpy初始化:[直接对Tensor操作] 对Sequential模型的参数进行修改: import numpy as np import torch from torch import n ...

  9. pytorch基础学习(一)

    在炼丹师的路上越走越远,开始入手pytorch框架的学习,越炼越熟吧... 1. 张量的创建和操作 创建为初始化矩阵,并初始化 a = torch.empty(, ) #创建一个5*3的未初始化矩阵 ...

随机推荐

  1. NFS配置不当导致的那些事儿

    NFS(Network File System):是FreeBSD支持的文件系统中的一种,它允许网络中的计算机之间通过TCP/IP网络共享资源: NFS配置:(声明:以下NFS实验是在RedHat7上 ...

  2. 2018-2019-2 网络对抗技术 20165227 Exp4 恶意代码分析

    2018-2019-2 网络对抗技术 20165227 Exp4 恶意代码分析 实验步骤: 使用的设备:Win7(虚拟机).kali(虚拟机) 实验一:使用如计划任务,每隔一分钟记录自己的电脑有哪些程 ...

  3. slf4j的简单用法以及与log4j的区别

    之前在项目中用的日志记录器都是log4j的日志记录器,可是到了新公司发现都是slf4j,于是想着研究一下slf4j的用法. 注意:每次引入Logger的时候注意引入的jar包,因为有Logger的包太 ...

  4. ROS安装与卸载

    1 版本选择 ROS 虽说也叫操作系统,但它是寄生在 LINUX 操作系统之下的,所以要求大兄弟你的电脑里至少要先有一个 LINUX 操作系统. 而对 ROS 兼容性最好的当属 Ubuntu 操作系统 ...

  5. 【API】恶意样本分析手册——API函数篇

    学编程又有材料了 http://blog.nsfocus.net/malware-sample-analysis-api/

  6. 【黑客免杀攻防】读书笔记6 - PE文件知识在免杀中的应用

    0x1 PE文件与免杀思路 基于PE文件结构知识的免杀技术主要用于对抗启发式扫描. 通过修改PE文件中的一些关键点来达到欺骗反病毒软件的目的. 修改区段名 1.1 移动PE文件头位置免杀 工具:PeC ...

  7. 对HUAWEI-ManagedProvisioning的一次不完整分析

    分析思路 关注点1:AndroidManifest.xml是Android应用的入口文件,包含有APP服务的权限.广播和启动位置. 关注点2:涉及到修改系统的函数,setWifiEnabled().I ...

  8. caffe-win10-cifar10另

    上一篇主要以bat形式实现了leveldb形式的cifar10,因为对于shell脚本不甚熟悉,所以这次专门利用.sh调用来实现lmdb形式的cifar10. 1.下载数据 同上一篇. 2.数据转换和 ...

  9. TERMIOS详解【转】

    转自:https://blog.csdn.net/guo_wangwei/article/details/1102931# TERMIOS NAME termios, tcgetattr, tcset ...

  10. 【转】如何安装JDK以及配置Java运行环境

    具体的参考这篇博文就好了~~!http://www.cnblogs.com/liu-en-ci/p/6743106.html