题目传送门

  快速的传送门

  慢速的传送门

题目大意

  给定一棵无根树,每个点可以染成黑色或者白色,第$i$叶节点到根的路径上最后有颜色的点必须为$c_{i}$(叶节点可以染色)。问最少要染颜色的点的个数。

  假设有根。显然动态规划。用$f[i][0 / 1]$表示考虑到$i$号点的颜色染成什么,它子树内的点最少要染多少个。

  这里考虑使染色的深度尽量小(相当于钦定根节点染色,没有影响的),方便转移。枚举根节点染什么颜色。如果子树的根的颜色和它一样,那个点就没必要染色了。

  于是愉快地解决了有根的时候。

  对于无根的时候可以枚举根,记录转移的前缀和可以快速通过一条边转移根并计算上面的动态规划值。

  其实根本没必要枚举根。

  因为根在哪最有答案不会改变。

  你可以考虑根所在的一条链。动态规划的某个方案都会钦定每个点都染成某个颜色。

  无论根在哪,一段连续染成相同颜色的点都可以只保留最浅的一个点的染色。

  所以直接找非叶节点动态规划。

Code

 /**
* bzoj
* Problem#1304
* Accepted
* Time: 48ms
* Memory: 1600k
*/
#include <bits/stdc++.h>
using namespace std; const int N = 1e4 + ; int m ,n;
int col[N];
int f[N][];
vector<int> g[N]; inline void init() {
scanf("%d%d", &m, &n);
for (int i = ; i <= n; i++)
scanf("%d", col + i);
for (int i = , u, v; i < m; i++) {
scanf("%d%d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
}
} void dfs(int p, int fa) {
if (p <= n) {
f[p][col[p]] = ;
f[p][col[p] ^ ] = ;
return ;
}
f[p][] = f[p][] = ;
for (int i = ; i < (signed) g[p].size(); i++) {
int e = g[p][i];
if (e == fa) continue;
dfs(e, p);
f[p][] += min(f[e][] - , f[e][]);
f[p][] += min(f[e][] - , f[e][]);
}
} inline void solve() {
dfs(m, );
printf("%d\n", min(f[m][], f[m][]));
} int main() {
init();
solve();
return ;
}

bzoj 1304 [CQOI 2009] 叶子的染色 - 动态规划的更多相关文章

  1. BZOJ 1304: [CQOI2009]叶子的染色

    1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 566  Solved: 358[Submit][Statu ...

  2. 【BZOJ1304】[CQOI2009]叶子的染色(动态规划)

    [BZOJ1304][CQOI2009]叶子的染色(动态规划) 题面 BZOJ 洛谷 题解 很简单. 设\(f[i][0/1/2]\)表示以\(i\)为根的子树中,还有颜色为\(0/1/2\)(\(2 ...

  3. BZOJ1304 CQOI2009 叶子的染色 【树形DP】

    BZOJ1304 CQOI2009 叶子的染色 Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方 ...

  4. CQOI2009叶子的染色

    叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一 ...

  5. 洛谷 P3155 [CQOI2009]叶子的染色 解题报告

    P3155 [CQOI2009]叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到 ...

  6. [BZOJ 1879][SDOI 2009]Bill的挑战 题解(状压DP)

    [BZOJ 1879][SDOI 2009]Bill的挑战 Description Solution 1.考虑状压的方式. 方案1:如果我们把每一个字符串压起来,用一个布尔数组表示与每一个字母的匹配关 ...

  7. P3155 [CQOI2009]叶子的染色

    P3155 [CQOI2009]叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到 ...

  8. BZOJ_1304_[CQOI2009]叶子的染色_树形DP

    BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...

  9. [BZOJ 1563] [NOI 2009] 诗人小G(决策单调性)

    [BZOJ 1563] [NOI 2009] 诗人小G(决策单调性) 题面 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以放的句子数目是没有限制的.小 G ...

随机推荐

  1. eclipse显示xml提示

    当网速比较慢时,可以添加本地的dtd. window下的preferces,输入xml,找到xml catalog 接着

  2. mac install wget

    没有Wget的日子是非常难过的,强大的Mac OS 下安装Wget非常简单 下载一个Wget的源码包,http://www.gnu.org/software/wget/ ftp下载地址:ftp://f ...

  3. oracle查询数据字典的sql

    使用的sql语句如下: select t1.username 用户, t2.TABLE_NAME 表名称, t3.comments 表业务含义, t2.COLUMN_NAME 字段名称, t4.com ...

  4. <4>Cocos Creator基本概念(场景树 节点 坐标 组件 )

    1.场景树 Cocos Creator是由一个一个的游戏场景组成,场景是一个树形结构,场景由 有各种层级关系的节点(下一节有具有介绍)组成: 如创建一个HelloWorld的默认项目NewProjec ...

  5. cocos v3.10 下载地址

    官方给出的是在:http://www.cocos2d-x.org/filedown/CocosForWin-v3.10.exe如果下载不了,可以在这里下http://cdn.cocos2d-x.org ...

  6. 不能安装vmtools解决:一个命令安装

    https://blog.csdn.net/fly66611/article/details/77994339 换好源 sudo su apt-get update apt-get dist-upgr ...

  7. Axure RP Extension for Chrome修复

    Axure RP Extension for Chrome安装之前一直用 Firefox 浏览器浏览原型文件,一直用不惯,而且用 Firefox 的唯一目的就是看原型.其他都是用 Chrome 浏览器 ...

  8. Set接口——HashSet集合

    不重复,无索引,不能重复元素,没有索引: HashSet集合: 此时实现Set接口,有哈希表(HashMap的一个实例)支持,哈希表意味着查询速度很快, 是无序的,即元素的存取的顺序可能不一致: 且此 ...

  9. SpringMVC中的自定义参数绑定案例

    由于日期数据有很多种格式,所以springmvc没办法把字符串转换成日期类型.所以需要自定义参数绑定.前端控制器接收到请求后,找到注解形式的处理器适配器,对RequestMapping标记的方法进行适 ...

  10. jenkins3

    Jenkins是基于java开发的. GitHub Git (熟练使用) Doocker (了解) Jenkins (熟练使用) Django (熟练使用) Angularjs (了解) Sentry ...