题目链接

题意:给定一张无向图,求任意两点之间的最小割。

在所有点中任选两个点作为源点\(S\)、汇点\(T\),求它们之间的最小割\(ans\),并把原图分成两个点集\(S',T'\),用\(ans\)更新两个点集间的答案。

然后再分别对两个点集\(S',T'\)重复这个过程,直到集合中只剩一个点。

这样就可以求出所有点对的最小割,且得到了一棵最小割树。可以证明这是对的。

注意每次最小割都是对全图做的。

每次更新答案也是对所有点更新答案(是把原图分成两部分)。

证明(具体见这):

可以证明一个结论是:记\(mincut(x,y)\)为\(x,y\)之间的最小割,对于图中任意三个点\(a,b,c\),有\(mincut(a,b)>=min(mincut(a,c),mincut(b,c))\)。

然后可以得出,对于任意两个点\(u,v\),令\(x,y\)为它们树上路径中\(mincut\)最小的边的两个端点,那么\(mincut(u,v)=mincut(x,y)\)。

//1044KB	516MS
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define MAXIN 150000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=160,M=6007; int n,src,des,Enum,H[N],nxt[M],to[M],fr[M],Cap[M],cap[M],pre[N],lev[N],tmp[2][N],A[N],ans[N][N];
bool vis[N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int w,int v,int u)
{
to[++Enum]=v, fr[Enum]=u, nxt[Enum]=H[u], H[u]=Enum, Cap[Enum]=w;
to[++Enum]=u, fr[Enum]=v, nxt[Enum]=H[v], H[v]=Enum, Cap[Enum]=w;
}
bool BFS()
{
static int q[N];
for(int i=1; i<=n; ++i) lev[i]=n+1;
int h=0,t=1; lev[des]=0, q[0]=des;
while(h<t)
{
int x=q[h++];
for(int i=H[x]; i; i=nxt[i])
if(lev[to[i]]==n+1 && cap[i^1])
lev[to[i]]=lev[x]+1, q[t++]=to[i];
}
return lev[src]<=n;
}
inline int Augment()
{
int mn=1e6;
for(int i=des; i!=src; i=fr[pre[i]])
mn=std::min(mn,cap[pre[i]]);
for(int i=des; i!=src; i=fr[pre[i]])
cap[pre[i]]-=mn, cap[pre[i]^1]+=mn;
return mn;
}
int ISAP()
{
static int num[N],cur[N]; if(!BFS()) return 0; memset(num,0,sizeof num);//
for(int i=1; i<=n; ++i) ++num[lev[i]],cur[i]=H[i];
int x=src,res=0;
while(lev[src]<=n)
{
if(x==des) x=src,res+=Augment();
bool can=0;
for(int i=cur[x]; i; i=nxt[i])
if(lev[to[i]]==lev[x]-1 && cap[i])
{
can=1, cur[x]=i, pre[x=to[i]]=i;
break;
}
if(!can)
{
int mn=n;
for(int i=H[x]; i; i=nxt[i])
if(cap[i]) mn=std::min(mn,lev[to[i]]);
if(!--num[lev[x]]) break;
++num[lev[x]=mn+1], cur[x]=H[x];
if(x!=src) x=fr[pre[x]];
}
}
return res;
}
void Cut(int x)
{
vis[x]=1;
for(int i=H[x]; i; i=nxt[i])
if(cap[i] && !vis[to[i]]) Cut(to[i]);
}
void Solve(int l,int r)
{
if(l==r) return; for(int i=2; i<=Enum; ++i) cap[i]=Cap[i];
src=A[l], des=A[r];
int cnt[2]={0,0}, mincut=ISAP(); memset(vis,0,sizeof vis);
Cut(src);
for(int i=1; i<=n; ++i)
if(vis[i])
for(int j=1; j<=n; ++j)
if(!vis[j]) ans[i][j]=ans[j][i]=std::min(ans[j][i],mincut); for(int i=l,x=A[i]; i<=r; x=A[++i]) tmp[vis[x]][cnt[vis[x]]++]=x;
for(int i=0; i<cnt[0]; ++i) A[l+i]=tmp[0][i];
for(int i=0,mid=l+cnt[0]; i<cnt[1]; ++i) A[mid+i]=tmp[1][i];
Solve(l,l+cnt[0]-1), Solve(l+cnt[0],r);
} int main()
{
for(int T=read(),m; T--; )
{
Enum=1, memset(H,0,sizeof H);
memset(ans,0x3f,sizeof ans); n=read(),m=read();
while(m--) AE(read(),read(),read());
for(int i=1; i<=n; ++i) A[i]=i;
Solve(1,n);
for(int Q=read(); Q--; )
{
int x=read(),res=0;
for(int i=1; i<=n; ++i)
for(int j=i+1; j<=n; ++j)
if(ans[i][j]<=x) ++res;
printf("%d\n",res);
}
putchar('\n');
}
return 0;
}

BZOJ.2229.[ZJOI2011]最小割(最小割树)的更多相关文章

  1. bzoj 2229: [Zjoi2011]最小割【Gomory–Hu tree最小割树】

    这个算法详见http://www.cnblogs.com/lokiii/p/8191573.html 求出两两之间最小割之后暴力统计即可 #include<iostream> #inclu ...

  2. bzoj 2229 [Zjoi2011]最小割(分治+最小割)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n ...

  3. bzoj 2229: [Zjoi2011]最小割

    Description 小白在图论课上学到了一个新的概念--最小割,下课后小白在笔记本上写下了如下这段话: "对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同 ...

  4. bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

    2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...

  5. 【BZOJ-2229】最小割 最小割树(最大流+分治)

    2229: [Zjoi2011]最小割 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1565  Solved: 560[Submit][Status ...

  6. BZOJ 4519 [CQOI2016]不同的最小割

    这道题目很奇怪. 为什么奇怪?因为这道题用了一种叫分治最小割/最小割树的玩意. 以前从来没有见过这东西. 推荐一个讲这玩意的博客 写起来还是很顺手的. #include<iostream> ...

  7. BZOJ 1497: [NOI2006]最大获利 最小割

    1497: [NOI2006]最大获利 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1497 Description 新的技术正冲击着手 ...

  8. scu - 3254 - Rain and Fgj(最小点权割)

    题意:N个点.M条边(2 <= N <= 1000 , 0 <= M <= 10^5),每一个点有个权值W(0 <= W <= 10^5),现要去除一些点(不能去掉 ...

  9. 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流

    最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...

随机推荐

  1. AT91RM9200---SMC简介

    1.前言 SMC(Static Memory Controller)Atmel 9200静态存储控制器的简称,它可以产生信号来控制外部静态存储和外设.SMC可通过编程寄存器来进行配置. 它有8路片选和 ...

  2. springboot系列七:springboot 集成 MyBatis、事物配置及使用、druid 数据源、druid 监控使用

    一.MyBatis和druid简介 MyBatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.M ...

  3. Python3学习笔记08-tuple

    元组与列表类似,不同之处在于元组的元素不能修改 元组使用小括号,列表使用方括号 元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可 tup1 = ('Google', 'Runoob', 19 ...

  4. 解决Android SDK下载和更新失败问题

    今天更新sdk报错如下: Failed to fetch URL http://dl-ssl.google.com/android/repository/addons_list-1.xml. 说dl- ...

  5. Android开发之深入理解Android Studio构建文件build.gradle配置

    摘要: 每周一次,深入学习Android教程,TeachCourse今天带来的一篇关于Android Studio构建文件build.gradle的相关配置,重点学习几个方面的内容:1.applica ...

  6. winform(记事本的打印)

  7. 深入理解JS中的变量及变量作用域

    JS的变量有两种,“全局变量”和“局部变量”. “全局变量”声明在函数外部,可供所有函数使用,(全局变量属于window)而“局部变量”声明在函数体内部,只能在定义该变量的函数体内使用. 1.全局变量 ...

  8. PHP替换指定字符串

    在PHP中,有两个函数可以实现字符串替换,strtr()和str_repalce()函数. 首先我们简单了解下strtr()函数的定义及语法. strtr:转换指定字符. 两个语法: 第一种语法: s ...

  9. python 全栈开发,Day34(基于UDP协议的socket)

    昨日内容回顾 网络的基础概念arp协议 :通过ip地址找到mac地址五层模型 : 应用层 传输层 网络层 数据链路层 物理层tcp协议 : 可靠的 面向连接 全双工 三次握手 四次挥手udp协议 : ...

  10. python 全栈开发,Day25(复习,序列化模块json,pickle,shelve,hashlib模块)

    一.复习 反射 必须会 必须能看懂 必须知道在哪儿用 hasattr getattr setattr delattr内置方法 必须能看懂 能用尽量用__len__ len(obj)的结果依赖于obj. ...