有时候,需要将数据以一定格式导出到txt文件中。利用Java的IO可以轻松的导出数据到txt中。

 package Action.txt;

 import java.io.BufferedWriter;
import java.io.File;
import java.io.FileOutputStream;
import java.io.OutputStreamWriter;
import java.io.Writer;
import java.util.ArrayList;
import java.util.List; import org.junit.Test; import bean.Question; /*[题干]防抱死制动系统(ABS)在什么情况下可以最大限度发挥制动器效能?
[类型]单选
[选项]{A:间歇制动},{B:持续制动},{C:紧急制动},{D:缓踏制动踏板}
[答案]C
[解析]ABS的目的就是为了防止刹车的时候一脚踩死,导致翻车什么的。 不过刹车刹死就比较慢(速度N快的时候),效果等于踩下刹车,再松下刹车,反复几次!*/
public class ExportTxtPaper { private static File outFile = new File("test.txt"); /**
* 产生单选模板
*
* @param num
* 单选数量
*/
public static void exportTxtPaper(List<Question> list) { Writer out;
try {
out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(outFile,true), "utf-8"), 10240);
for (int i = 0; i < list.size(); i++) {
out.write(
"[题干]"+list.get(i).getTimu()+
"\r\n[类型]"+list.get(i).getLeixing()
+ "\r\n[A选项]"+list.get(i).getAxuanxiang()
+ "\r\n[B选项]"+list.get(i).getBxuanxiang()
+ "\r\n[C选项]"+list.get(i).getCxuanxiang()
+ "\r\n[D选项]"+list.get(i).getDxuanxiang()
+ "\r\n[答案]"+list.get(i).getDaan()
+ "\r\n[解析]"+list.get(i).getJiexi()+"\r\n");
out.write("\r\n");
}
out.flush();
out.close();
} catch (Exception e1) {
// TODO Auto-generated catch block
e1.printStackTrace();
}
} /**
* 测试产生模板
*/
@Test
public void test1(){ List<Question> list = new ArrayList<>();
list.add(new Question("你喜欢吃什么", "单选", "老司机", "方便吗", "辣条", "牛奶", "老司机", "我是老司机"));
list.add(new Question("你喜欢吃什么", "单选", "老司机", "方便吗", "辣条", "牛奶", "老司机", "我是老司机"));
list.add(new Question("你喜欢吃什么", "单选", "老司机", "方便吗", "辣条", "牛奶", "老司机", "我是老司机"));
list.add(new Question("你喜欢吃什么", "单选", "老司机", "方便吗", "辣条", "牛奶", "老司机", "我是老司机"));
list.add(new Question("你是人", "判断", "", "", "", "", "是", "我是老司机"));
list.add(new Question("你是人", "判断", "", "", "", "", "是", "我是老司机"));
ExportTxtPaper .exportTxtPaper(list);
}
}

 结果:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAtMAAAK2CAIAAAADr4ePAAAgAElEQVR4nO3d749lyXkf9v5z9h9gv+MLvlAAAgQERoDAN3nhJkAEAZggkWADEQQ7lCh5RpZIShETWV7bgS3JyA/t2IpJRxYZUSTFtchdrmaWXO4uf0okRdIibcIQ+Sq+edEzPafPqXrqqTrnnr7d8/mgsOi5t05V3R5g6ztPnXvv2Xs//IqmaZqmado+7az46N/9jX8Y/FfTNE3TNG2szZPHb7z45f/iv/zpF7/11z/xkz/18a9/9yd+8qf+5Zvf+omf/Kl//oVv/MRP/tQ/ePELv/qpV/7+Bz944+vWNE3TNO02tmvJ43/47Ye/8pnXv/yD//TaX//wle/+h3/37e9/4i///b/52ndeePNbv/PFbzz/8Ku/+ImXf+WTn//QL/6tG1+3pmmapmmr20ff8da3v+P9lz8//7bnKt76vovy5c+/7bmry5vt+bc99553zZLHz/3eqx/6zBtvfP+HX/jeD1/+qx/86Tf/+uPf+O6//sq3/683/vKfffHr//CVr/y9j332+c+9JnlomqZp2vp28e63P/fO5294Ge9/31uee+5tP1vv8LPvuUweF+9+ey2ZzJVfVCl5/ML//dr/+pmvvPjVv/zkV/7i4298/SNf/OoLj978vc9/6Z+89MUPv/joVz75+f/+9//tv3jpC5KHpmmapq1oH33HW+NN+rI9/7Y4E4z0LLUn2aL/2WrNI4gp15LHL338S//oT7/68Hv/8aXv/OAz3/7+H//Fdz/6tb964c1v/u5r33j+0dc+9NKbP/MHf/LKd74veWiapmnaeHuyl7/rnaeRPHKrfe+HX7mWmfrOZZ5c+Nb3XUsev/yp157/5Nc+8eW/+KPXv/6RL3719x+9+S8+//o/fem1D7/46gc+/fAX/vil//p3//XXvvvXkoemaZqmrW9B8pjVDN7y7o9ePjKJF8+/7bnnnnvn88ue6QU8jRGZ05arS66vYVLzqFdH3vXO597y7ve97bn3vOPdb3+aPP7b33rl73/6td/6k6/82V99/9Pf/Pcf/8Z3P/LVv3rhjW/+7mvf+MePvvqbn//KL33m1b/zkU/9f//5P0semqZpmra+9dY83vXOq6LCR9/x1um1a2oekzDx/ve9JaxkvOudYcHjueeeKx2+PLmd5fI+j48+TR5/+3ce/eqn3vif//jN/+dLX/tXX/jK//nwjd/9/Jf+8ee++OEXX/3Ap/78/X/y8v/4kU//3L/6f3/wwx9KHpqmaZq2vvWftjz/tqf1j/e8K+qZb7PkMR32lfd+uOs+j8JtHxfvfvuTyxd3mP78H7z6wU+88cGPvfGJb37vD7/+nT/48rf/jzf+8p9/8ev/6OHXfuPlN+999kt/9+Mv/eZnHh0OB8lD0zRN09a3kfs8HpclZht8kDymd2YU7wZtJY/papOu1UiuBlwkj//pY1/4wMfe+Ad/9PoLr375f//zN/7Zy6/99ue+8JsvPvrVT/35+z/x8s/90ed+5oWP/28v/rmah6ZpmqZt0nZJHs2WTR6VFdZqHpeJZ1aYuZ483vcnX7z/h6//8r/90ke++u3ff+Obv/faX/yTV7/+v7zy5Q+89MYv/7sv/fynXv07H/n0Z7/5PTUPTdM0Tduk9SePj77jrU9OW66dgBw5eUzfjJO7z+PqlpTl22sfJ4//7rdfef8nX7v/h6/f/9jrl3d4/NOXXvutP/vCr//pw1/51J//0ide/vmPf/a/+b2PvP7t76p5aJqmadombZE8Hr9dZfrH6XtV4jtMe97VMm2Pk8fFu9/zjp8tJ4/6J5617/O43nlS8/iZ33n4iy9+8d6ffekDL73xoZff/OBLb37wpTd+7aU3fu1zr//6y2/++stv/tpnX//b/+Yzh8NBzUPTNE3TNmmL5DHLE6+892ffc1kneMu7P/qud14/ZLk8drnqPOnZuYzHH5r+lnd/9L3vf99bCtFh9k7aSSv3DyZafIbpZXvzq1//wQ9/GDTJQ9M0TdPuSLt+wlI+T5m/tyX5GayzVk8ev3TvFz70i38raL6rVtM0TdO0sVZIHpqmaZqmaUdqkoemaZqmafs1yUPTNE3TtP3a2X/19/6lpmmapmnaPu3sb370Y03TNE3TtH2a5KFpmqZp2n5N8tA0TdM0bb+WSR6v3js/u3hw82vVnsn24OLs4oWeS164OL/36MaXrWmappVbsubx4OKs8n/zBxfn916d/vHs4sHx1z3bjcrLe7IDvXrv/Oy6vp1sZHnn9x8+/vnVe+eJjfDy1/jg4vhrCxdQ+D0HjrzUxeQXDyYPPf4NX/vLvczHkoemadopt3LyWGzVC0921qv/yz/+oZQ8Ht47P7t4ME8A5/fvXZyVdrtEe7xNlvfFJ+WZq+1/tve/eu/86ZZZXtvZxQs/+vELw8ubJo/5Giu79dXGf/0X+GR5P/6bH/34bx7dn6zx6SsaXGccKs4KYwY7+uU6X7g4m/3tP7x3vuov+vKX+fSX9vjnh/fOnwz49G/z4b3zIHlM/6KvFfAe3T9f+9etaZqmdbSo5nH1v/KnbfYv40f3zx9vsU/22mXyeNpneWqTqwfM26v3Lp5MutjIX7g4u3jw4xemu+r5xUWt5hGtbXB5966lg/sXk+mebH6tPf/syf79dHmXQWGymEf3z59mrLFf4/SXdn7v3sX5vfsX89S4LBeFv8Z5zebqtzq2wtkv6uKFy7/xR/fPn/4qZsljdsmTbsFf9JPksf7XqGmapmVaeNqyqMBf7utXf3z6L/LSZnp57eSS0u4+cDrz4OLiweWFF0HNI1Nyb6xtbHk/errPPYluT347wVCP7p8vnp0s78HFWelXd7XNjx5yXUa0y9/nk+Oe4jqje32q63y6qa85hpvWqK6y5jTTzP7qnwaISUGu/he9zSI1TdO0bIvv81jcTvH09oUfP95QH1ewn2zz8/93T/8dWdq9pv+sz7XH9Yzz+w+Dew8f3T+/ePC4Jl8sMZzff9hc29Dy/uYykF1lr8dHJJcpqX5jRCF5XP+tFpYxubtl+NcYuDw9ic1/jT+eHrjMj4o6V/hwUW85v3d/mjef5IzZacvVI1cLC/+ip8lj6K9b0zRN62qNO0wnB+rzw5eH987PLy7OLx5c2zXnyWMaDl69fhLx6qJDsl1tLQ8uzs7PF8cB5/devbZpnd+/d61UczVjdW2TlzCwvAcXFxeXEe2Fedp4nNUWe+r5vUezVHd96nLymG6iA+v88SJKzn69k0fuFe7dKU997fCi+Gvva9drV8tBijWPqwW0/qKfXLeoqWiapmnHas33tjz59+KiEP3CvfsPl/9Sn3W79o/Ibe6leFpRuLi4zD4v/OjBxcWDy/OCWVS6OvEp7DTttQ0u7+LB1Y6+qLfMikbXFnB9z5vd5FGOCNN/yq+/kWK5E1/7hc87PVj+FU9+k9NawugKr1VNyu++WdY8pncWJ/6ir63TrR6apmlHb5l31T64mG+ZT9pl8qjtX/MDkeLuvuJfmQ8uzi7uL7fFq/3p6lwmWfMoJY/+D5O4d//hj6bJIzyumvxxdg/N4j0d4X0ex6t5PLp/cX6+vPuhWvN4EheuhYaxFT66f14oaV3PPcvk8TQNV2se9eSh5qFpmnb0lql5PHl7yHKXatY8rn3SRuU+j4H/1z/JOuf3Htwr1DweXMaR8/Ow5tFc2/DyhpLH01/d43+jX/uQkof3zuvvbVmxzrjmcbmSSq9J8rheJ3h0//zydz9/cGyFT4+cpplymjzuPY2flweAT59q/0XP7vOQPDRN047cguRxeSI+2T8ud6DpZtlOHtu/t+XJPYyX28mrpeRROG158oaXaT1mvrZrdZPyDbPJlj5tmWzjj9dwdWPssgpS+TyPFets/qovXqgMPr3pZ1GtuUyr13Pq8G/yevJ44eLay7/84/RvfDLv02DnvS2apmmn04JPEqsceF/uf5f/T08kj/D9AiuO1R//C3j2lsvpv8UfJ49pwePJe1yT72UYXl5c87hKOct/Xj8Od53vWBlZZ+a9LU//TqOaR2adW9w/Ub7PYzbLk6h0di2R5H6TbvLQNE3bo+3xjXGLI//H7YY+NfJaGqit7eaWl/rV3a51nv4KT2SRmqZpz0LzXbWapmmapu3XJA9N0zRN0/ZrZ9/57vc0TdM0TdP2aWf/EQBgL2c//fy3NE3TNE3T9mlnP/38tw4AALuQPACA/dyO5HF2dlb8uevCDS9Z9klONLAeALhLCslj+jmVxQcvHy9+rmWtf9CzNuOsQ/HnYOXJqeO58n0kDwDIKCePQr/63j+2VXd1SyaPrnlrieR4yUPsAICO5FGrbaSmWdHtLFFKaXZoFjymySO+pLnIrlcHAM+UVTWP5KZeGzPZrRl0NtnRz54cITUHH1vDQFwDgLtnVc0jv5sOJ4/adLVLumoey5FrHYrriXvGiww6A8Adlk0e5YsndYJjJ4/k5t27jOJLCAaZrqc332RWCAB3Wzt5BJtrbdvOa069fLDYs7na2ozFWYLBB9aT7AkAz4K+mkeQDOINNbndFrf/4MFN9vtk5+J6kpdklgEAz4LTTR7FB5fb/8paS63g0ZVUki9Q7ACAvve2LDfvTOzIdGhOfWhFkDG1KLN58iiGNgB41nQnj1rPHWoetelmPyerHcVBMq9oIHkMl0kA4I4ZTx7Lbr11gmS3rtCTTwDNNLBV8lj/awGAOyOVPKZHLYPTbHSfR3PANaWXZJbqXU9XGQYA7rbUN8ZNfxjbRJtbfjBCsdoxvNP3rnBNHGk+1XwWAO6YQvKY99hia1wzSHLvz0yUjxfBs73JAwC40k4e5ctWb7T5EcbiwlhPAOCoUqctV483f16OkBwtPg3Jlz2KC5M8AOBEDH6SWGZTL/aJL0weoyQPRyQPADg1g98Y19VnTfIYuGN0OkWmPwCwm+y7ajNq46xMHvk/1p4SOADgRHTXPM4mb2qtpYcgmuyWPAa6AQDHdur3eeQLLcuIk6zNAAC76UgetfOLZoZIhozigwM1j3zQAQB21nGfRzRKmBiKcUHyAIBn0FHe29IbIOILk6ctxUEkDwA4Ke3k0dz7Zzkgf7Yy0K0rFYkgAHBqRmoeQcKY9umtVeSnTvaRPADg1Ay+qzbTMz9mbfCuWstskOWMcegBAHYw+K7aTOdjdNukHgMA3JTsN8bFRyQraxW16kVxruSz+RoJALCbQvKY98ht1fvs6EIDANxq7eQxMui++WDbEx8A4Hiypy3V69e9f2SfU5hpn4FTGIc1ALCVwU8SK/YfSB7JSTdMHpmr4pAheQDAsMHvbSk+HlcR4qcaq1z9btt4kUHn/O8BAGjaIHksn+3qGSSAzIDJHFAME82fm1cBAF36kkfvNt98dtnzGMljunLJAwBuUDZ5nC0+oWtWpcicYizHj/f4eEnNp2ZLXS67tk7JAwCOZDx5FPvHASLTfyB5xFlntvLhmkczUQEATX3Jo/jsjSePTOeVyaNrSQBATUfyGDs9KQ4V9N8heQyctnQtCQCoSSWPWm1g9khy877Z5NGc6xDGrMySAICa7uQR/DGfPK429el/a/1rD3Z1Lq65OexVt2V1RPIAgAGbJY84YSz/mBkhWFLwePLBldFB8gCAAe3kEQeIrgJA/hyk98LezuvrFpIHAAxY9Y1xs9AQyIwQj5m8MBNHllPUllcbR+wAgDGF5LHf3D1Fi5UXXiWGWkUkH0HEDgAYdpTksc/eXDxAyfcHAPa36rTl0P9hHsFcy3njlWSOYJbP9p4HAQAb6vjGuOoQuc/kSA6Sf3YseRR7Sh4AsI+O97Y0aw9xLSF+qrHKzo8Xaw7SNTsAsJUNPsM036fYM3PwMZB48q9C8gCA3WyWPOIR8qM1k0cmqcyuXfafppb4cgBgQ+PJY7mXr6k9xFEg/2Cyf+1VAABHlU0ewfYcJ4ne/mPJY9aht3+8YABgK1t+V+1B8gAAQlt+V+3h5pJHZupZhziIAADHsGXySEaQG0we0zMjyQMA9nczyWO2/TdDQO3B6a0ntRmXd6gExQ8A4Kg2u88jThjLP2ZGqC2gOE4wSO8dIQDAkaz9DNOuskFvLAiW1DVFPJ3wAQC7WfWNccVSRFFmhHjMYIT8vLWUI3wAwD4KyWO/uXMVjmPMWwwl8gcAHNtRksf+W3jvjEIGANyIVacth/4P8wjmWs4br2TNcYnkAQA3IvXelsYQuc/kSA6Sf1byAIBbJ5s8gjs3iyWKZc/4qcYq1yWPWmUleFEAwDFs8EliywfzBYxkAsiEoWCQ5itqrhkA2MRmySPfIc4oyeTRtaRi594XBQCsl/oksfKV1wsM+VOMYvJY/tC1pLGsk6/TAACbGE8exQ5xgMj0z5+25DsEs2QWDABs5RlKHgOnPADAtm5f8giOdWoHPZmcIXkAwA62TB7JCHKDpy3TP/a+TABgvQ3e2zKQPK4KEplzkNqD+Q5dCwYAjqc7edSejRPG8o+ZEYJJuzrU1i95AMDOuj/DtNg5uW1n7uHIX5jvEB/lJKcAANZb9Y1xs9DQvNMzHiEeM7+SsWclDwDYQSF57Df3aIWj95KVwQUA2MpRksf+G3lvtohrLQDAkaw6bTn0f5hHMNdy3q1OW4odmlkEANhc9g7TaIgtPon82MclzRtK4ssBgE2kPkksrj0USxTL/vFTjVVu0SFZxQEAjmeDz/PI9yn2DBJJcsD8jGdP3sZSE88CAKy0wWeYFgYd+lyv4NpmWImTxFXgyC8DADiG8eQx2+DzhYTilr/8IV5SvkPtKckDAPa35fe2HFoBItN/8+RR6yB5AMD+7kLyKB6mNEeQPABgf89c8sjcFwIAHMmWySMZQbZNHsnShZoHAJyCm0keVwWGZblC8gCAO2yDz/OoHXbMjjCCE43mcUntqWZIqk0RZykA4EjWfoZp5h6L2sjLB/MJY6BzMJHkAQD7WPWNcbO9PJAZIR6zeWHXsF2jAQBbKSSP/ebuKVpMn80Ehfhkp2tGAGArHcljTanA1g4AHLpOW7pu58xozggA3DGp97YcSmGi9mBthOQs3a8AALg9OpLHoXKfZu/Nnr2dxREAuDMGP88jOIhJHrUUz1YkDwC421Kf51HsMHakMlAgcf8HANwZ2dOWq6eW5Y24c9f9H2tSDgBw+vruMC0P0apJBMcrzaklDwC4S7Kfnj79uXivRrEcskwbcQQJTmeEDwC4A/pOW8anGf1il3y9BAA4fR3Jo1jwCKoaGfHUsyLK+KsEAE5DX/Loenz67Fnudo0geWQuBwBO3HGTx/IujUxMSf4RALh1jpU8Zocps58zQ81OZNztAQB3QN83xuXv81iOWZwlnhEAuGMKyaPadeg+j3wfAODO2yB5DPTfLYjkJxp7H83AC+m6ZOU9ub3TAcCx9Z221LolT1hmF2ZmzIgXGb36ypLOKu/EGVhPca7MkpKdm7/2rukA4Nj6Pj092OnjLTC5MQ/sms1542t7X1Rz9uLgy1iTtDJ5iB0AnJqO5FF8Np88UqvpPzs46rwDZY/mFPlLMuvPDAIApyOVPOLYMf3vobKz7pk88s/m512v9ntYs/7Z38tAHgKAnaW+Me6w2NVm3Yp7W7NDfEnxqviRYOtd7sGZzgNXFde2/GFs8bNZzkpp5qz/1w4Au+k7bWluddMHM9tqPPVZKfTMLg821+b48bzJMTMzzpaaDwQDK5E8ADhlq5JHsPcX/3UejF98KhMdjp08lk/FaoOPBYJmz/g1Sh4AnJqR97ZM80Rx013GlE2SRzHoNEfLTB3UJIIw0bWMZOdgVQODSx4AnJrxmkdwdhBv+SuTR3K0Yp+gc7N/s9rRDGG1R2q6kkdyPQBws7a/z6OZD8aSR2aW5rW1l1YMT5ts2Mupk8lj7DeWvxAAbsT4aUvz39YbJo9mGMq8hOL4tUGCxeerC8tB8rFA8gDgTjrWe1sO2yWPePx4600+Fc+7YVzYJE8kl9pcLQDsb+STxHqTR347HNg4uy4ZC0ljySPz7JqCzdWDwfIkDwBOTeob4+L9bH3yCE4rMpIrydRyamvLL6m4gObamt1qz8YvX/IA4NQUkse8R+XeiFqH2eNrtsNMz1q+yQ/VnCUTbuJnM1fFwWXaOYhQXfMCwP7ayQMAYCuSBwCwH8kDANiP5AEA7EfyAAD2I3kAAPuRPACA/UgeAMB+JA8AYD+SBwCwH8kDANiP5AEA7EfyAAD2I3kAAPuRPACA/UgeAMB+bkfyODs7K/7cdeGGlyz7JCcaWA8A3CWF5HE2UXzw8vGzklr/oGdtxlmH4s/BypNTx3Pl+0geAJBRTh6FfvW9f2yr7uqWTB5d89YSyfGSh9gBAB3Jo1bbSE2zottZopTS7NAseEyTR3xJc5Fdrw4Animrah7JTb02ZrJbM+hssqOfPTlCag4+toaBuAYAd8+qmkd+Nx1OHrXpapd01TyWI9c6FNcT94wXGXQGgDssmzzKF0/qBMdOHsnNu3cZxZcQDDJdT2++yawQAO62dvIINtfatp3XnHr5YLFnc7W1GYuzBIMPrCfZEwCeBX01jyAZxBtqcrstbv/Bg5vs98nOxfUkL8ksAwCeBaebPIoPLrf/lbWWWsGjK6kkX6DYAQB9721Zbt6Z2JHp0Jz60IogY2pRZvPkUQxtAPCs6U4etZ471Dxq081+TlY7ioNkXtFA8hgukwDAHTOePJbdeusEyW5doSefAJppYKvksf7XAgB3Rip5TI9aBqfZ6D6P5oBrSi/JLNW7nq4yDADcbalvjJv+MLaJNrf8YIRitWN4p+9d4Zo40nyq+SwA3DGF5DHvscXWuGaQ5N6fmSgfL4Jne5MHAHClnTzKl63eaAdGGJ5ULACAE5E6bbl6vPnzcoTkaM3TkOJEcZ+rnyUPADgRg58kltnUi33iC+PRkjdtdC0SANjT4DfGdfVZnzzGbvXIhxUAYB/Zd9Vm1MZZkzyaJzXVF5b+kA8AYDfdNY+zyZtaa+khiCZjNY/mhTHJAwBOxK25z+Mw+SizZuI5tAIQAHAjOpJH7fyimSHyISOYOl/zyAcdAGBnHfd5RKOEd4AW79LIJI9llSJTwJA8AOBkHeW9LXEQCS5fOezyQckDAE5KO3kEN0wUKxBdxyjJbsXyRjO+iCAAcGpGah5Bwpj2aWaU2sjLcZbPBrNLHgBwsgbfVZvpmR8z3y0Zeop94tADAOxg8F21mc7H6NaMDploAgDclOw3xsVHJMueScGMxSU1Xkx6GfE4AMCRFJLHvEduqz7Gji4oAMAd004eI4MePysUpxiY1+kMAOwpe9pSvX7d+0eGT2GKlwycqgysGQAYNvhJYsX+a3bx+JLZs8WJarPHcUTyAIA9DX5vS/HxoHpRfLY5crFDMTrU8sTYgwDAkWyQPJbPdvXMHJEEA+aLFnFCqk0NAGyoL3kk9+Y1GSWZPJaBo6twklwqALCtbPJYHmrMSgX5QkIxecQBIpk81swLAOxgPHkU+2d29OMlj+DyZSKZBqbmmgGATfQlj+Kzp5A84hOc4uOz5CF2AMAOOpLHVqcYmySPAcWVix0AsKdU8ogrCsXQMFwjydc8Ys1BpplD8gCAfXQnj+CP+eQxKzY0z0rWx51mT+EDAHawWfKIE8byj5kRMkvqSh7LNTRDDwCwoXbyiANE12lFvhTRvDCfPILEE8wIABzDqm+MK27wRZkR4jGTExXnDRKP5AEAeyokj/3mvuk6hNgBADs7SvK4RTu6ygcA7GnVacuh/8M8grmKpyTBSpqHLMkF9K4ZABjW8Y1x1SG2eIdqfElwo0bz8TiXSB4AsKeO97YEtYdiz1n/+KnGKlckj7FBAIBj2OAzTPN9ij0zZyXbJo/ipLWpAYANbZY84hHyo+2QPDKdAYBjGE8es1JBvpBQG602e/BgV+kinhcA2EE2eSSPQjI7+lbJI9+hmEumgSk5CwCw0pbfVXs41eRR7DNLHmIHAOxgy++qPeybPOI8lBlE7ACAnW2ZPJIR5EjJo3mrR63mURsfANjczSSPWbGhWb3YvOaRTDwAwLY2u88jThjLP2ZGyE+aTB7LNfTGFwBgjbWfYdp1WjFcugjCUCa11BJPfCEAsLlV3xgX32mRGadZXymOEGej5VVjhRYAYHOF5LHf3EN1iA2zgtgBADs7SvK4XTt612pVSgBgjVWnLYf+D/MI5iqektROW5b980c8vZ2Lr1f4AIABqfe2NIbY4h2qa05Ygts4rn7eKpRIHgCwRjZ5JDfjYNuOn2qscl3y6BpteFgAoGmDTxJbPpgPCnFYSS6pWIfYMHkUF1lbKgAQ2Cx55DvE+SBfaYgDR5w8MgFCzQMANpf6JLHyldd37nxhIA4KR0oeA7WK3kADADSNJ49ih2TJIeg/UGnovSTzipYxZRqwkuMAADO3O3lcpYHmg5nR4m6z5CF2AMCAW5w8uk5bZhf2ngpNL4wHBwACWyaPZAJYnzxmQWF5DjIbsBky4tc1m6W2SACgaYP3tgwkj1nxoHhhfknxAjKjNbslExIAEOtOHrVn44Sx/GNmhGDS5rO9owXrr7184QMAenV/hmmx89j5xfLB2jh7Jo/4REbaAIA1Vn1j3Cw0BDIjxGPWrp09lUlCYwGoK2MBAEWF5LHf3KvrCr3VjmmffDwaWBgAUHSU5LHbDh2XTPJXAQD7WHXacuj/LI1gruW8vec1yXklDwC4Kdk7TKMhtnjHadedGcENJb1hBQDYU+qTxOLtvFiiWPaPn2qscnWH4c4AwIY2+DyPfJ9iz0ytYsPkIXYAwA3a4DNMC4P2JI/MtcVuyaOWZs849AAAGxpPHrMNO7+dF5PH8od4Sb0d4tcCAOxjy+9tObQCRKb/UZNH86UBAEd1+5LHmtMTyQMAbtbtSx7NMfN9xA4A2NmWySMZQW4webjJAwBu1s0kj6sQMP1vrX9xxoGjlum1tYkAgKPa4PM8ahv5LAEEgaAZBdjZEG8AACAASURBVOKUMJAkgmgCABzP2s8w7dr1m/WMoFCRGbP3zEX+AICdrfrGuNmu33vwcUjUV+JKSa3QUpurGX0AgKMqJI/95u6vcBzCU5tan0z/1mIBgA10JI+4PtF7LQDwDOo4bcknj/jkZTl45lwGALgDUu9tOZTCRO3B2gjJWbpfAQBwe3Qkj9lTyZzRFSYycaRWOKk9G/cHAPY0+HkeyzQw/TmvOXVyPcWexWwkfADADUp9nkexw9iRykCBZJlR1iSP5hoAgOPJnrZcPbUsb8Sdp32aW34y5RTTRrySeBYAYB99d5iWh2jdP5G/zSKfPJYDSh4AcPqyn54+/bl4r0axHFI8KIlDTO2R5gmL5AEAp6/vtGV8mtEvdsmUN4p1kWBYyQMAbkpH8igWPIKqRkY8dbPOMf2j5AEAp68veXQ9Pn22GQ6KQ9X+uNXjAMDOjps8lnt/JqY0/5iphSTrJQDAno6VPII7M4rnLLVu07SRPK9ZTh30BwD21PeNcZntvxYIirPEMwIAd0wheVS7Dt3nke8DANx5GySPgf4DQaTrXo3hoLNyYQBArO+0pdYtecIyu7A5Y+2Ss5630V51Xs4SnB/lD4AkDwDI6/v09CCOxMkjuZEH4SYzaTE0LGNKMrIsn6rFl+AVAQBTHcmj+Gw+eaRWk7uVpLnrLzvkw0qy4DEdMHkJAJBKHnHsmBUVgsJDezWdySMepxh9tkoGtdcleQBAIPWNcYfSfRLNksbKmkezGrFcT6bPcsbmVcvlLX/oepkA8MzqO20p7t+1/pkYkZk6OWPcYSwr1MaZ/R4EDgBIWpU8aoWEQ+XdKMH48VNBXEjGlyB55Gse0xGSrwgAmBp5b8t0Fy9u0suYsknyyOSYWnToDStdi5Q8ACBpvOYRnDXEaWMseRRHKMaO4oDFYJTXfGnCBwBkbH+fR7PM0Js8lnmi+GC8tuQCmpYDSh4AkDd+2hLXBg5bJI/pXEHP2c/FJdWGylc7ipNuFWgA4BlxrPe2HLZIHrXHZ8sIBm9WJuK40Fy25AEAXUY+Saw3eST7Z4Yq/pxPHvkZx54VPgAglvrGuDg6rE8etdONw/VsUeswSx7F45JgkbHiVZlXDQAsFZLHvEf6/SPFC9cXBpr99695rKmUAMCzrJ08AAC2InkAAPuRPACA/UgeAMB+JA8AYD+SBwCwH8kDANiP5AEA7EfyAAD2I3kAAPuRPACA/UgeAMB+JA8AYD+SBwCwH8kDANiP5AEA7Od2JI+zs7Piz7XONV0TAQCbKySP4la93MLjrT3Y/pchoBkOepNH1+O9fQCAYeXkUehX3/s33NElDwC42zqSR622kZpmRbdMKSVYarOgMrBOAGDMqppHfl/fMHk0r1LzAICTtarmkS9+DCeP2nTxJcNrkDwA4KiyyaN88ZNbTZtXrU8eycLGYRGS8qctmRcCAKzRTh7BLl5MHsHG34wCxXiRLHWsJ3kAwLH11TyCZLB5zaN4yDJ7cPbUcOKpzQIAbOt0k0fxwWUc2WTe2iwAwLb63tuyLBskTyg2SR7NikjQrXde4QMAjqE7edR67lDzqE0Xr6p5zlKcV/IAgGMYTx5du/X65JEPPb01j3wcAQBWSiWP6VHL4DQb3efRHHAWU1YeAwkfALCt1DfGTX+IVadpbfDBCMWSRrNn0C25qnwfACCpkDzmPbbYetcMkjzWKXYLElJ+ScIHAGylnTzKl63ejHtH6L0bQ1wAgBOUOm25erz583KE5Gj5GYM+ax4HAHYw+ElitRwQd25eGBysZJLH9Bhl9t/gPhIAYDeD3xjX1WfD5BEHkemD05whcADAici+qzajNs6a5FF7Kh48+BkAuEHdNY/lWcayQxBNupJH7zjNzgDAzTr1+zxqT/XWPOLyDACwj47k0XWW0dWhOfXyqWasmSaMTE4CAHbQcZ9HNEr4YV/F0HC85FH7bzw+ALCDo7y3JQ4iweXNmzaWJybLS6aPSx4AcFLayaOZAGZpoLeYkezWddpS+1nyAICbNVLzCBLGtE+mYpGcevm45AEAt9Hgu2ozPfNjNrslayHNyyUPALhZg++qzXTeqltXEorrK5IHANys7DfGxUckme0/yATBKUwzBjXDhOQBAKejkDzmPeqZY6Bbl65UkekgeQDAzWonj6ddR49aunrmiREAcOtkT1sOPcmj66glmLGxdMkDAG6b7B2mxdwQ3LfRnnjFx34MdAYATkFH8jhU7taME8CaMBGUSXpHBgBOQfZ7W2Y/ByEgedRSPFvJhJjMOADAaUp9enqxw9iRypoCiZoHANx23Z8ktixvxJ277v8IkkpviAEATlDfHablIVrnHfljkdrUh1IEkTwA4NbJflft9OfiPRbFcsgybcQRJPl4/rgHADgpI99VOzLNpt8YJ3kAwC3VkTyKBY+gqpGRmbqWMyQPALh1+pJH1+PTZ5NViiB5LJ+VPADg1jlu8liGhkxMqT0ieQDAbXes5LG84bT2VDBUb0wBAE5c3zfG5e/zWI5ZnCWesbpod5gCwO1USB7VrkP3eeT7dBE7AOA22iB5DPTfLTfkJwpuKFn2zNR+Vq4HAO6kvtOWWrfkCcvswsyMGfEio1dfWdJZeJrT+/jAegDgrur79PRgp4+TR7IwMJAbmvPG1/a+qGBMyQMAmjqSR/HZfPJIraaVPHofWTlvM4QF1ZfMRADwrEkljzh2zM4mivvxnskj/2x+3syzkgcANKW+Me6wyBOHRGlh/5pHUI1YliUynZdXBa9F8gCApr7TlmIBo9Y/s83HU5+VQs/s8mAvb44fzxsMm3w5xVmEDwCeZauSR7CVzjbjWQqprmbT05ZNkseGQUHyAICR97ZM80TxX/zLmLJJ8iju3M3RMlMXE9Xs56DUkSl+HCnNAMDtMl7zKO7Ty87LPiuTR3K0Wnqode7q35w9uR4AeNZsf59HMx+MJY/MLM1ray+tGJ66Ro7VwhkAPGvGT1uapwwbJo9mGMq8hOL4tUEyoedQ+iVk5g1WCAB327He23LYLnnE43dt6vlEcqjnnt6aRz6OAMCdN/JJYr3JI9m/q+fYJWMhKXikucKx9QDAXZX6xrh4d1+fPILzmozkSjK1nNraluPH9Zh4Pb19AODOKCSPeY/KvRG1DrPHu05DBnomyw8DRzCzDnFgWoahbV8mANwN7eQBALAVyQMA2I/kAQDsR/IAAPYjeQAA+5E8AID9SB4AwH4kDwBgP5IHALAfyQMA2I/kAQDsR/IAAPYjeQAA+5E8AID9SB4AwH4kDwBgP7cjeZydnRV/7rpww0uWfZITDawHAO6SQvI4myg+ePn4WUmtf9CzNuOsQ/HnYOXJqeO58n0kDwDIKCePQr/63j+2VXd1SyaPrnlrieR4yUPsAICO5FGrbaSmWdHtLFFKaXZoFjymySO+pLnIrlcHAM+UVTWP5KZeGzPZrRl0NtnRz54cITUHH1vDQFwDgLtnVc0jv5sOJ4/adLVLumoey5FrHYrriXvGiww6A8Adlk0e5YsndYJjJ4/k5t27jOJLCAaZrqc332RWCAB3Wzt5BJtrbdvOa069fLDYs7na2ozFWYLBB9aT7AkAz4K+mkeQDOINNbndFrf/4MFN9vtk5+J6kpdklgEAz4LTTR7FB5fb/8paS63g0ZVUki9Q7ACAvve2LDfvTOzIdGhOfWhFkDG1KLN58iiGNgB41nQnj1rPHWoetelmPyerHcVBMq9oIHkMl0kA4I4ZTx7Lbr11gmS3rtCTTwDNNLBV8lj/awGAOyOVPKZHLYPTbHSfR3PANaWXZJbqXU9XGQYA7rbUN8ZNfxjbRJtbfjBCsdoxvNP3rnBNHGk+1XwWAO6YQvKY99hia1wzSHLvz0yUjxfBs73JAwC40k4e5ctWb7T5EcbiwlhPAOCoUqctV483f16OkBwtPg3Jlz2KC5M8AOBEDH6SWGZTL/aJL0weoyQPRyQPADg1g98Y19VnTfIYuGN0OkWmPwCwm+y7ajNq46xMHvk/1p4SOADgRHTXPM4mb2qtpYcgmuyWPAa6AQDHdur3eeQLLcuIk6zNAAC76UgetfOLZoZIhozigwM1j3zQAQB21nGfRzRKmBiKcUHyAIBn0FHe29IbIOILk6ctxUEkDwA4Ke3k0dz7Zzkgf7Yy0K0rFYkgAHBqRmoeQcKY9umtVeSnTvaRPADg1Ay+qzbTMz9mbfCuWstskOWMcegBAHYw+K7aTOdjdNukHgMA3JTsN8bFRyQraxW16kVxruSz+RoJALCbQvKY98ht1fvs6EIDANxq7eQxMui++WDbEx8A4Hiypy3V69e9f2SfU5hpn4FTGIc1ALCVwU8SK/YfSB7JSTdMHpmr4pAheQDAsMHvbSk+HlcR4qcaq1z9btt4kUHn/O8BAGjaIHksn+3qGSSAzIDJHFAME82fm1cBAF36kkfvNt98dtnzGMljunLJAwBuUDZ5nC0+oWtWpcicYizHj/f4eEnNp2ZLXS67tk7JAwCOZDx5FPvHASLTfyB5xFlntvLhmkczUQEATX3Jo/jsjSePTOeVyaNrSQBATUfyGDs9KQ4V9N8heQyctnQtCQCoSSWPWm1g9khy877Z5NGc6xDGrMySAICa7uQR/DGfPK429el/a/1rD3Z1Lq65OexVt2V1RPIAgAGbJY84YSz/mBkhWFLwePLBldFB8gCAAe3kEQeIrgJA/hyk98LezuvrFpIHAAxY9Y1xs9AQyIwQj5m8MBNHllPUllcbR+wAgDGF5LHf3D1Fi5UXXiWGWkUkH0HEDgAYdpTksc/eXDxAyfcHAPa36rTl0P9hHsFcy3njlWSOYJbP9p4HAQAb6vjGuOoQuc/kSA6Sf3YseRR7Sh4AsI+O97Y0aw9xLSF+qrHKzo8Xaw7SNTsAsJUNPsM036fYM3PwMZB48q9C8gCA3WyWPOIR8qM1k0cmqcyuXfafppb4cgBgQ+PJY7mXr6k9xFEg/2Cyf+1VAABHlU0ewfYcJ4ne/mPJY9aht3+8YABgK1t+V+1B8gAAQlt+V+3h5pJHZupZhziIAADHsGXySEaQG0we0zMjyQMA9nczyWO2/TdDQO3B6a0ntRmXd6gExQ8A4Kg2u88jThjLP2ZGqC2gOE4wSO8dIQDAkaz9DNOuskFvLAiW1DVFPJ3wAQC7WfWNccVSRFFmhHjMYIT8vLWUI3wAwD4KyWO/uXMVjmPMWwwl8gcAHNtRksf+W3jvjEIGANyIVacth/4P8wjmWs4br2TNcYnkAQA3IvXelsYQuc/kSA6Sf1byAIBbJ5s8gjs3iyWKZc/4qcYq1yWPWmUleFEAwDFs8EliywfzBYxkAsiEoWCQ5itqrhkA2MRmySPfIc4oyeTRtaRi594XBQCsl/oksfKV1wsM+VOMYvJY/tC1pLGsk6/TAACbGE8exQ5xgMj0z5+25DsEs2QWDABs5RlKHgOnPADAtm5f8giOdWoHPZmcIXkAwA62TB7JCHKDpy3TP/a+TABgvQ3e2zKQPK4KEplzkNqD+Q5dCwYAjqc7edSejRPG8o+ZEYJJuzrU1i95AMDOuj/DtNg5uW1n7uHIX5jvEB/lJKcAANZb9Y1xs9DQvNMzHiEeM7+SsWclDwDYQSF57Df3aIWj95KVwQUA2MpRksf+G3lvtohrLQDAkaw6bTn0f5hHMNdy3q1OW4odmlkEANhc9g7TaIgtPon82MclzRtK4ssBgE2kPkksrj0USxTL/vFTjVVu0SFZxQEAjmeDz/PI9yn2DBJJcsD8jGdP3sZSE88CAKy0wWeYFgYd+lyv4NpmWImTxFXgyC8DADiG8eQx2+DzhYTilr/8IV5SvkPtKckDAPa35fe2HFoBItN/8+RR6yB5AMD+7kLyKB6mNEeQPABgf89c8sjcFwIAHMmWySMZQbZNHsnShZoHAJyCm0keVwWGZblC8gCAO2yDz/OoHXbMjjCCE43mcUntqWZIqk0RZykA4EjWfoZp5h6L2sjLB/MJY6BzMJHkAQD7WPWNcbO9PJAZIR6zeWHXsF2jAQBbKSSP/ebuKVpMn80Ehfhkp2tGAGArHcljTanA1g4AHLpOW7pu58xozggA3DGp97YcSmGi9mBthOQs3a8AALg9OpLHoXKfZu/Nnr2dxREAuDMGP88jOIhJHrUUz1YkDwC421Kf51HsMHakMlAgcf8HANwZ2dOWq6eW5Y24c9f9H2tSDgBw+vruMC0P0apJBMcrzaklDwC4S7Kfnj79uXivRrEcskwbcQQJTmeEDwC4A/pOW8anGf1il3y9BAA4fR3Jo1jwCKoaGfHUsyLK+KsEAE5DX/Loenz67Fnudo0geWQuBwBO3HGTx/IujUxMSf4RALh1jpU8Zocps58zQ81OZNztAQB3QN83xuXv81iOWZwlnhEAuGMKyaPadeg+j3wfAODO2yB5DPTfLYjkJxp7H83AC+m6ZOU9ub3TAcCx9Z221LolT1hmF2ZmzIgXGb36ypLOKu/EGVhPca7MkpKdm7/2rukA4Nj6Pj092OnjLTC5MQ/sms1542t7X1Rz9uLgy1iTtDJ5iB0AnJqO5FF8Np88UqvpPzs46rwDZY/mFPlLMuvPDAIApyOVPOLYMf3vobKz7pk88s/m512v9ntYs/7Z38tAHgKAnaW+Me6w2NVm3Yp7W7NDfEnxqviRYOtd7sGZzgNXFde2/GFs8bNZzkpp5qz/1w4Au+k7bWluddMHM9tqPPVZKfTMLg821+b48bzJMTMzzpaaDwQDK5E8ADhlq5JHsPcX/3UejF98KhMdjp08lk/FaoOPBYJmz/g1Sh4AnJqR97ZM80Rx013GlE2SRzHoNEfLTB3UJIIw0bWMZOdgVQODSx4AnJrxmkdwdhBv+SuTR3K0Yp+gc7N/s9rRDGG1R2q6kkdyPQBws7a/z6OZD8aSR2aW5rW1l1YMT5ts2Mupk8lj7DeWvxAAbsT4aUvz39YbJo9mGMq8hOL4tUGCxeerC8tB8rFA8gDgTjrWe1sO2yWPePx4600+Fc+7YVzYJE8kl9pcLQDsb+STxHqTR347HNg4uy4ZC0ljySPz7JqCzdWDwfIkDwBOTeob4+L9bH3yCE4rMpIrydRyamvLL6m4gObamt1qz8YvX/IA4NQUkse8R+XeiFqH2eNrtsNMz1q+yQ/VnCUTbuJnM1fFwWXaOYhQXfMCwP7ayQMAYCuSBwCwH8kDANiP5AEA7EfyAAD2I3kAAPuRPACA/UgeAMB+JA8AYD+SBwCwH8kDANiP5AEA7EfyAAD2I3kAAPuRPACA/UgeAMB+bkfyODs7K/7cdeGGlyz7JCcaWA8A3CWF5HE2UXzw8vGzklr/oGdtxlmH4s/BypNTx3Pl+0geAJBRTh6FfvW9f2yr7uqWTB5d89YSyfGSh9gBAB3Jo1bbSE2zottZopTS7NAseEyTR3xJc5Fdrw4Animrah7JTb02ZrJbM+hssqOfPTlCag4+toaBuAYAd8+qmkd+Nx1OHrXpapd01TyWI9c6FNcT94wXGXQGgDssmzzKF0/qBMdOHsnNu3cZxZcQDDJdT2++yawQAO62dvIINtfatp3XnHr5YLFnc7W1GYuzBIMPrCfZEwCeBX01jyAZxBtqcrstbv/Bg5vs98nOxfUkL8ksAwCeBaebPIoPLrf/lbWWWsGjK6kkX6DYAQB9721Zbt6Z2JHp0Jz60IogY2pRZvPkUQxtAPCs6U4etZ471Dxq081+TlY7ioNkXtFA8hgukwDAHTOePJbdeusEyW5doSefAJppYKvksf7XAgB3Rip5TI9aBqfZ6D6P5oBrSi/JLNW7nq4yDADcbalvjJv+MLaJNrf8YIRitWN4p+9d4Zo40nyq+SwA3DGF5DHvscXWuGaQ5N6fmSgfL4Jne5MHAHClnTzKl63eaAdGGJ5ULACAE5E6bbl6vPnzcoTkaM3TkOJEcZ+rnyUPADgRg58kltnUi33iC+PRkjdtdC0SANjT4DfGdfVZnzzGbvXIhxUAYB/Zd9Vm1MZZkzyaJzXVF5b+kA8AYDfdNY+zyZtaa+khiCZjNY/mhTHJAwBOxK25z+Mw+SizZuI5tAIQAHAjOpJH7fyimSHyISOYOl/zyAcdAGBnHfd5RKOEd4AW79LIJI9llSJTwJA8AOBkHeW9LXEQCS5fOezyQckDAE5KO3kEN0wUKxBdxyjJbsXyRjO+iCAAcGpGah5Bwpj2aWaU2sjLcZbPBrNLHgBwsgbfVZvpmR8z3y0Zeop94tADAOxg8F21mc7H6NaMDploAgDclOw3xsVHJMueScGMxSU1Xkx6GfE4AMCRFJLHvEduqz7Gji4oAMAd004eI4MePysUpxiY1+kMAOwpe9pSvX7d+0eGT2GKlwycqgysGQAYNvhJYsX+a3bx+JLZs8WJarPHcUTyAIA9DX5vS/HxoHpRfLY5crFDMTrU8sTYgwDAkWyQPJbPdvXMHJEEA+aLFnFCqk0NAGyoL3kk9+Y1GSWZPJaBo6twklwqALCtbPJYHmrMSgX5QkIxecQBIpk81swLAOxgPHkU+2d29OMlj+DyZSKZBqbmmgGATfQlj+Kzp5A84hOc4uOz5CF2AMAOOpLHVqcYmySPAcWVix0AsKdU8ogrCsXQMFwjydc8Ys1BpplD8gCAfXQnj+CP+eQxKzY0z0rWx51mT+EDAHawWfKIE8byj5kRMkvqSh7LNTRDDwCwoXbyiANE12lFvhTRvDCfPILEE8wIABzDqm+MK27wRZkR4jGTExXnDRKP5AEAeyokj/3mvuk6hNgBADs7SvK4RTu6ygcA7GnVacuh/8M8grmKpyTBSpqHLMkF9K4ZABjW8Y1x1SG2eIdqfElwo0bz8TiXSB4AsKeO97YEtYdiz1n/+KnGKlckj7FBAIBj2OAzTPN9ij0zZyXbJo/ipLWpAYANbZY84hHyo+2QPDKdAYBjGE8es1JBvpBQG602e/BgV+kinhcA2EE2eSSPQjI7+lbJI9+hmEumgSk5CwCw0pbfVXs41eRR7DNLHmIHAOxgy++qPeybPOI8lBlE7ACAnW2ZPJIR5EjJo3mrR63mURsfANjczSSPWbGhWb3YvOaRTDwAwLY2u88jThjLP2ZGyE+aTB7LNfTGFwBgjbWfYdp1WjFcugjCUCa11BJPfCEAsLlV3xgX32mRGadZXymOEGej5VVjhRYAYHOF5LHf3EN1iA2zgtgBADs7SvK4XTt612pVSgBgjVWnLYf+D/MI5iqektROW5b980c8vZ2Lr1f4AIABqfe2NIbY4h2qa05Ygts4rn7eKpRIHgCwRjZ5JDfjYNuOn2qscl3y6BpteFgAoGmDTxJbPpgPCnFYSS6pWIfYMHkUF1lbKgAQ2Cx55DvE+SBfaYgDR5w8MgFCzQMANpf6JLHyldd37nxhIA4KR0oeA7WK3kADADSNJ49ih2TJIeg/UGnovSTzipYxZRqwkuMAADO3O3lcpYHmg5nR4m6z5CF2AMCAW5w8uk5bZhf2ngpNL4wHBwACWyaPZAJYnzxmQWF5DjIbsBky4tc1m6W2SACgaYP3tgwkj1nxoHhhfknxAjKjNbslExIAEOtOHrVn44Sx/GNmhGDS5rO9owXrr7184QMAenV/hmmx89j5xfLB2jh7Jo/4REbaAIA1Vn1j3Cw0BDIjxGPWrp09lUlCYwGoK2MBAEWF5LHf3KvrCr3VjmmffDwaWBgAUHSU5LHbDh2XTPJXAQD7WHXacuj/LI1gruW8vec1yXklDwC4Kdk7TKMhtnjHadedGcENJb1hBQDYU+qTxOLtvFiiWPaPn2qscnWH4c4AwIY2+DyPfJ9iz0ytYsPkIXYAwA3a4DNMC4P2JI/MtcVuyaOWZs849AAAGxpPHrMNO7+dF5PH8od4Sb0d4tcCAOxjy+9tObQCRKb/UZNH86UBAEd1+5LHmtMTyQMAbtbtSx7NMfN9xA4A2NmWySMZQW4webjJAwBu1s0kj6sQMP1vrX9xxoGjlum1tYkAgKPa4PM8ahv5LAEEgaAZBeKUMJAkgmgCABzP2s8w7dr1m/WMoFCRGbP3zEX+AICdrfrGuNmu33vwcUjUV+JKSa3QUpurGX0AgKMqJI/95u6vcBzCU5tan0z/1mIBgA10JI+4PtF7LQDwDOo4bcknj/jkZTl45lwGALgDUu9tOZTCRO3B2gjJWbpfAQBwe3Qkj9lTyZzRFSYycaRWOKk9G/cHAPY0+HkeyzQw/TmvOXVyPcWexWwkfADADUp9nkexw9iRykCBZJlR1iSP5hoAgOPJnrZcPbUsb8Sdp32aW34y5RTTRrySeBYAYB99d5iWh2jdP5G/zSKfPJYDSh4AcPqyn54+/bl4r0axHFI8KIlDTO2R5gmL5AEAp6/vtGV8mtEvdsmUN4p1kWBYyQMAbkpH8igWPIKqRkY8dbPOMf2j5AEAp68veXQ9Pn22GQ6KQ9X+uNXjAMDOjps8lnt/JqY0/5iphSTrJQDAno6VPII7M4rnLLVu07SRPK9ZTh30BwD21PeNcZntvxYIirPEMwIAd0wheVS7Dt3nke8DANx5GySPgf4DQaTrXo3hoLNyYQBArO+0pdYtecIyu7A5Y+2Ss5630V51Xs4SnB/lD4AkDwDI6/v09CCOxMkjuZEH4SYzaTE0LGNKMrIsn6rFl+AVAQBTHcmj+Gw+eaRWk7uVpLnrLzvkw0qy4DEdMHkJAJBKHnHsmBUVgsJDezWdySMepxh9tkoGtdcleQBAIPWNcYfSfRLNksbKmkezGrFcT6bPcsbmVcvlLX/oepkA8MzqO20p7t+1/pkYkZk6OWPcYSwr1MaZ/R4EDgBIWpU8aoWEQ+XdKMH48VNBXEjGlyB55Gse0xGSrwgAmBp5b8t0Fy9u0suYsknyyOSYWnToDStdi5Q8ACBpvOYRnDXEaWMseRRHKMaO4oDFYJTXfGnCugW5yAAAAN5JREFUBwBkbH+fR7PM0Js8lnmi+GC8tuQCmpYDSh4AkDd+2hLXBg5bJI/pXEHP2c/FJdWGylc7ipNuFWgA4BlxrPe2HLZIHrXHZ8sIBm9WJuK40Fy25AEAXUY+Saw3eST7Z4Yq/pxPHvkZx54VPgAglvrGuDg6rE8etdONw/VsUeswSx7F45JgkbHiVZlXDQAsFZLHvEf6/SPFC9cXBpr99695rKmUAMCzrJ08AAC2InkAAPuRPACA/UgeAMB+JA8AYD+SBwCwH8kDANiP5AEA7EfyAAD2I3kAAPv5/wHEXdcgTnxe+wAAAABJRU5ErkJggg==" alt="" />

Java导出List集合到txt文件中——(四)的更多相关文章

  1. java将数据写入到txt文件中(txt有固定的格式)

    java将数据写入到txt文件中,这个应该对于学过java I/O的人来说是很简单的事情了,但是如果要将数据以固定的格式写入到txt文件中,就需要一定的技巧了. 这里举个简单的例子,以供参考: 比如我 ...

  2. windows 批处理把所有java源码导入一个txt文件中

    首先在src下搜*.java,把搜到的文件全拷出来放在allsrc目录下, 然后在allsrc目录下建个run.bat,键入以下内容for %%i in (*.java)  do type %%i&g ...

  3. java存储数据到本地txt文件中

    java存储数据,方便打印日志等 1.会覆盖以前的数据 try { File writeName = new File("D:\\data.txt"); // 相对路径,如果没有则 ...

  4. Java基础之集合框架——在文件中存储地图(TryPhoneBook2)

    控制台程序. import java.io.*; public class Person implements Comparable<Person>, Serializable { // ...

  5. 4.产生10个1-100的随机数,并放到一个数组中 (1)把数组中大于等于10的数字放到一个list集合中,并打印到控制台。 (2)把数组中的数字放到当前文件夹的numArr.txt文件中

    package cn.it.text; import java.io.FileWriter; import java.io.IOException; import java.util.ArrayLis ...

  6. java 写一个"HelloJavaWorld你好世界"输出到操作系统文件Hello.txt文件中

    package com.beiwo.homework; import java.io.File; import java.io.FileOutputStream; import java.io.IOE ...

  7. Java中读取txt文件中中文字符时,出现乱码的解决办法

    这是我写的一个Java课程作业时,遇到的问题. 问题描述: 我要实现的就是将txt文件中的内容按一定格式读取出来后,存放在相应的数组. 我刚开始运行时发现,英文可以实现,但是中文字符就是各种乱码. 最 ...

  8. java算法面试题:编写一个程序,将a.txt文件中的单词与b.txt文件中的单词交替合并到c.txt文件中,a.txt文件中的单词用回车符分隔,b.txt文件中用回车或空格进行分隔。

    package com.swift; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File ...

  9. 按行读取TXT文件中的内容

    public Dictionary<int, string> GetDicFromLog() { try { StreamReader sr = new StreamReader(file ...

随机推荐

  1. Sql 重置自动增长列

    Sql 重置自动增长列: dbcc checkident(表名, reseed, 0) 使用的情况,一般出现在主外键关联表,导致无法 truncate 只能delete的情况. 此时我们可能会需要重置 ...

  2. Bicriterial routing 双调路径 HYSBZ - 1375(分层最短路)

    Description 来越多,因此选择最佳路径是很现实的问题.城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用.路径由连续的道路组成.总时间是各条道路旅行时间的和,总费用是各条道路所支 ...

  3. Codeforces Round #412 C. Success Rate

    C. Success Rate time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  4. JPQL模糊匹配单个字符

    JPQL模糊匹配,不是%,而是单个字符,该怎么办?比如我要查出数据库中满足后三位是数字的字符串 对于mysql来说,使用通配符 %和_可以轻松解决,但是对于JPQL来说模糊查询就伤脑筋了... 有一个 ...

  5. 码云平台IDEA系列的插件使用

    一.IDEA插件安装 file -- setting --  Plugins -- 搜索gitee --  Search in repositories 安装后重启编译器 二.登录并拉取项目 file ...

  6. 启用SharePoint 2013文档版本控制

    cls $PSSnapin = Add-PsSnapin Microsoft.SharePoint.PowerShell -ErrorAction SilentlyContinue | Out-Nul ...

  7. 【转】cJSON 使用笔记

     缘      起       最近在stm32f103上做一个智能家居的项目,其中选择的实时操作系统是 rt_thread OS v1.2.2稳定版本,其中涉及到C和java(android)端数据 ...

  8. hdu 2158 最短区间版大家来找碴(尺取法)

    Problem Description 给定一个序列,有N个整数,数值范围为[0,N).有M个询问,每次询问给定Q个整数,可能出现重复值.要求找出一个最短区间,该区间要包含这Q个整数数值.你能找的出来 ...

  9. Linux中配置Aria2 RPC Server

    启动Aria2 RPC Server 直接在终端中执行aria2c --enable-rpc --rpc-allow-origin-all可直接开启RPC服务. 这种方法并不能进行个性化的参数设置,需 ...

  10. ->2018.06 计划

    2018.4.14->2018.06计划 力求掌握以下几种算法: 树链剖分 网络流 主席树 splay 莫队