POJ3304 Segments 【线段直线相交】
题意:
给出n条线段两个端点的坐标,问所有线段投影到一条直线上,如果这些所有投影至少相交于一点就输出Yes!,否则输出No!。
思路:
计算几何。这道题要思考到两点:
1:把问题转化为是否存在一条直线与每条线段都有交点。证明:若存在一条直线l和所有线段相交,作一条直线m和l垂直,则m就是题中要求的直线,所有线段投影的一个公共点即为垂足。
2:枚举两两线段的各一个端点,连一条直线,再判断剩下的线段是否都和这条直线有交点。证明:若有l和所有线段相交,则可保持l和所有线段相交,左右平移l到和某一线段交于端点停止(“移不动了”)。然后绕这个交点旋转。也是转到“转不动了”(和另一线段交于其一个端点)为止。这样就找到了一个新的l满足题意,而且经过其中两线段的端点。
判断线段与直线l是否相交的方法:
1:利用叉积的性质,判断线段的两个端点是否在直线的两边。
2:求线段所在的直线tmp,求tmp与l的交点p,由线段两端点到p的距离之和,与线段的距离比较,若相等则证明线段与直线相交。
代码:
#include<iostream>
#include<cmath>
using namespace std;
const int maxn = ;
const double eps = 1e-;
int n; struct Point
{
double x, y;
}s[maxn], e[maxn]; double mult(Point sp, Point ep, Point op)
{
return (sp.x-op.x)*(ep.y-op.y) - (ep.x-op.x)*(sp.y-op.y);
} bool findd(Point p1, Point p2)
{
if(abs(p1.x-p2.x) < eps && abs(p1.y-p2.y) < eps)
return false;
for(int i = ; i < n; i ++)
if(mult(p1, p2, s[i])*mult(p1, p2, e[i]) > eps) return false;
return true;
} int main()
{
int t, i, j;
cin >> t;
while(t --)
{
cin >> n;
for(i = ; i < n; i ++)
cin >> s[i].x >> s[i].y >> e[i].x >> e[i].y;
bool flag = false;
if(n < ) flag = true;
for(i = ; i < n && !flag; i ++)
for(j = i + ; j < n && !flag; j ++) // 枚举线段的端点。
{
if(findd(s[i], s[j])) flag = true;
else if(findd(s[i], e[j])) flag = true;
else if(findd(e[i], s[j])) flag = true;
else if(findd(e[i], e[j])) flag = true;
}
if(flag) cout << "Yes!" << endl;
else cout << "No!" << endl;
}
return ;
}
POJ3304 Segments 【线段直线相交】的更多相关文章
- POJ 3304 Segments (直线和线段相交判断)
Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7739 Accepted: 2316 Descript ...
- POJ 3304 Segments 判断直线和线段相交
POJ 3304 Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...
- POJ 3304 Segments (判断直线与线段相交)
题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...
- POJ 3304 Segments(判断直线与线段是否相交)
题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...
- Segments POJ 3304 直线与线段是否相交
题目大意:给出n条线段,问是否存在一条直线,使得n条线段在直线上的投影有至少一个公共点. 题目思路:如果假设成立,那么作该直线的垂线l,该垂线l与所有线段相交,且交点可为线段中的某两个交点 证明:若有 ...
- poj 3304线段与直线相交
http://poj.org/problem?id=3304 Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: ...
- 判断线段和直线相交 POJ 3304
// 判断线段和直线相交 POJ 3304 // 思路: // 如果存在一条直线和所有线段相交,那么平移该直线一定可以经过线段上任意两个点,并且和所有线段相交. #include <cstdio ...
- POJ 1039 Pipe【经典线段与直线相交】
链接: http://poj.org/problem?id=1039 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- URAL 1966 Cycling Roads 点在线段上、线段是否相交、并查集
F - Cycling Roads Description When Vova was in Shenzhen, he rented a bike and spent most of the ...
随机推荐
- Cenos7 添加service,开机启动
本地有一个 data-service.jar 1. 编写启动脚本 data-service-start [root@iz2ze0fq2isg8vphkpos5sz shell]# more data ...
- jenkins--svn+Email自动触发3(jenkins全局设置)
全局java配置: 全局sonar-scanner插件配置:
- python成长之路六-函数的初识
定义函数 我们现学已知的python函数有<内置函数> 而我们现在要学的是<自定义函数> 1,def 定义一个函数 def name(): # 后接函数名 冒号 pass 2 ...
- Spring事务说明与自实现
要使用Springboot的事务其实非常简单,在启动类上添加@EnableTransactionManagement,在Service的类或者方法上使用@Transactional就可以了. 事务本身 ...
- 学习2__STM32--汉字显示
汉字显示操作流程 第一,进入主函数 int main(void) { u32 fontcnt; u8 i,j; u8 fontx[];//gbk码 u8 key,t; delay_init(); // ...
- scrapy 中间件
一.中间件的分类 scrapy的中间件理论上有三种(Schduler Middleware,Spider Middleware,Downloader Middleware),在应用上一般有以下两种 1 ...
- sliding menu
http://www.androiduipatterns.com/2012/06/emerging-ui-pattern-side-navigation.htmlhttps://github.com/ ...
- A1086. Tree Traversals Again
An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example ...
- 【洛谷P4097】Segment 李超线段树
题目大意:维护一个二维平面,给定若干条线段,支持询问任意整数横坐标处对应的纵坐标最靠上的线段的 id,相同高度取 id 值较小的,强制在线. 题解:初步学习了李超线段树.李超线段树的核心思想在于通过标 ...
- 【LOJ#10180】烽火传递 单调队列+dp
题目大意:给定一个 N 个非负整数数组成的序列,每个点有一个贡献值,现选出其中若干数,使得每连续的 K 个数中至少有一个数被选,要求选出的数贡献值最小. 题解:设 \(dp[i]\) 表示考虑了序列前 ...