luogu P1593 因子和
不要吐槽博主总做这些数论氵题
首先我们看到这种因数问题,果断质因数分解
所以当前数\(a=p_1^{k_1}*p_2^{k_2}...*p_m^{k_m}\)
可得\(a^b=p_1^{k_1*b}*p_2^{k_2*b}...*p_m^{k_m*b}\)
考虑因数和,假设数\(a\)只有一个质因子\(p_1\),则因数和为\(\sum_{i=0}^{k_1}{p_1}^i\)
如果有第二个质因子\(p_2\)则因数和为\(\sum_{i=0}^{k_1}({p_1}^i*\sum_{j=0}^{k_2}{p_2}^j)=(\sum_{i=0}^{k_1}{p_1}^i)*(\sum_{j=0}^{k_2}{p_2}^j)\)
以此类推,我们要求的因数之和显然为\(\prod_{i=1}^m \sum_{j=0}^{k_i}{p_i}^j\)
至于后面那一段怎么求,先令\(f_i=\sum_{j=0}^{i}p^j\)
可以发现\(f_{i+1}=\sum_{j=0}^{i+1}p^j=p*(\sum_{j=0}^{i}p^j)+1=p*f_i+1\)
然后就可以偷税的使用矩乘了(如果不会请参考这题)
代码如下
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#define LL long long
#define il inline
#define re register
using namespace std;
const LL mod=9901;
il LL rd()
{
re LL x=0,w=1;re char ch;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct mrtx
{
LL a[2][2];
mrtx(){memset(a,0,sizeof(a));}
}a,b;
il mrtx mlt(mrtx a,mrtx b)
{
mrtx c;
for(int i=0;i<=1;i++)
for(int j=0;j<=1;j++)
for(int k=0;k<=1;k++)
c.a[i][j]=(c.a[i][j]+(a.a[i][k]*b.a[k][j])%mod)%mod;
return c;
}
il mrtx ksm(mrtx a,mrtx b,LL bb) //这里直接把转移矩阵乘到初始矩阵上去
{
while(bb)
{
if(bb&1) a=mlt(a,b);
b=mlt(b,b);
bb>>=1;
}
return a;
}
LL p[20][2],tt,n,m,ans=1;
int main()
{
n=rd(),m=rd();
int srt=sqrt(n);
for(int i=2;i<=srt;i++)
{
if(n%i!=0) continue;
p[++tt][0]=i;
while(n%i==0) ++p[tt][1],n/=i;
}
if(n>1) p[++tt][0]=n,p[tt][1]=1;
a.a[0][0]=a.a[0][1]=1,b.a[1][0]=b.a[1][1]=1;
for(int i=1;i<=tt;i++)
{
p[i][1]*=m;
b.a[0][0]=p[i][0];
ans=(ans*ksm(a,b,p[i][1]).a[0][0])%mod;
}
printf("%lld\n",ans);
return 0;
}
luogu P1593 因子和的更多相关文章
- 洛谷 P1593 因子和
https://www.luogu.org/problemnew/show/P1593#sub 利用约数和定理:可以去看一下公式第13条 然后这个题目的话,要求$a^b$,那么我们首先可以先将a分解然 ...
- 洛谷P1593 因子和
题目描述 输入两个正整数a和b,求a^b的因子和.结果太大,只要输出它对9901的余数. 输入输出格式 输入格式: 仅一行,为两个正整数a和b(0≤a,b≤50000000). 输出格式: a^b的因 ...
- P1593 因子和
P1593 因子和新算法:#define ni 逆元先质因数分解,(1+p1^1+p1^2...p1^x)*(1+p2^1+p2^2...p2^x)然后套等比数列公式就可以了. #include< ...
- luogu 1593 因子和
因子和 题目描述 输入两个正整数a和b,求\(a^b\)的因子和.结果太大,只要输出它对9901的余数. 解法 基本算数定理,每一个数都可以被分解成一系列的素数的乘积,然后你可以分解出因数了. 如何求 ...
- 【Luogu】P1593因子和(唯一分解定理,约数和公式)
题目链接 首先介绍两个定理. 整数唯一分解定理:任意正整数都有且只有一种方式写出素数因子的乘积表达式. \(A=(p1k1 p2k2 ...... pnkn \) 求这些因子的代码如下 ;i*i< ...
- 洛谷 - P1593 - 因子和 - 费马小定理
类似的因为模数比较小的坑还有卢卡斯定理那道,也是有时候逆元会不存在,因为整除了.使用一些其他方法避免通过逆元. https://www.luogu.org/fe/problem/P1593 有坑.一定 ...
- luogu P3226 [HNOI2012]集合选数
luogu 因为限制关系只和2和3有关,如果把数中2的因子和3的因子都除掉,那剩下的数不同的数是不会相互影响,所以每次考虑剩下的数一样的一类数,答案为每类数答案的乘积 如果选了一个数,那么2的因子多1 ...
- [luogu]P3938 斐波那契[数学]
[luogu]P3938 斐波那契 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚 ...
- [luogu]P3939 数颜色[二分]
[luogu]P3939 数颜色 题目描述 小 C 的兔子不是雪白的,而是五彩缤纷的.每只兔子都有一种颜色,不同的兔子可能有 相同的颜色.小 C 把她标号从 1 到 n 的 n 只兔子排成长长的一排, ...
随机推荐
- 微信小程序入門學習資料鏈接
https://blog.csdn.net/github_38847071/article/details/73250258 https://blog.csdn.net/lily2016n/artic ...
- Async和Await 异步方法
Async和Await关键字是C#异步编程的核心.通过使用这两个关键字,你可以使用.NET Framework或Windows Runtime的资源创建一个异步方法如同你创建一个同步的方法一样容易.通 ...
- BZOJ2212 POI2011Tree Rotations(线段树合并)
显然子树内的操作不会对子树外产生影响.于是贪心,若交换之后子树内逆序对减少就交换. 这个东西可以用权值线段树计算.操作完毕后需要对两棵权值线段树合并,这个的复杂度是两棵线段树的重复节点个数.那么总复杂 ...
- 在finally块中使用try catch,并且catch的时候抛出异常的一个问题
在finally中使用try/catch,并且catch的时候抛出异常 IDEA会提示警告 Reports throw statements inside of finally blocks. Whi ...
- day5 continue 和 break的区别
# continue num = 1 while num <=10: num += 1 if num == 3: continue print(num) # continue 表示跳出本次循环后 ...
- 洛谷 P4127 [AHOI2009]同类分布 解题报告
P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...
- hdu 2844 coins(多重背包 二进制拆分法)
Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...
- eclipse index 不工作 F3 不能找到头文件
To add paths containing code to parse, follow these steps :1. Right click on the project2. Select Pr ...
- A1022. Digital Library
A Digital Library contains millions of books, stored according to their titles, authors, key words o ...
- ping的作用
Ping是潜水艇人员的专用术语,表示回应的声纳脉冲,在网络中Ping 是一个十分好用的TCP/IP工具.它主要的功能是用来检测网络的连通情况和分析网络速度. Ping有好的善的一面也有恶的一面.先说一 ...